
Simulink® Design Verifier™

Reference

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Verifier™ Reference
© COPYRIGHT 2007–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

Prover, Prover Technology, Prover Plug-In, and the Prover logo are trademarks or registered
trademarks of Prover Technology AB in Sweden, the United States, and in other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2010 Online only New for Version 1.7 (Release 2010b)
April 2011 Online only Revised for Version 2.0 (Release 2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)

Contents

Functions — Alphabetical List
1

Blocks — Alphabetical List
2

Model Advisor Checks
3

Simulink Design Verifier Checks . 3-2
Simulink Design Verifier Checks Overview 3-2
Check compatibility with Simulink Design Verifier 3-2
Detect dead logic with Simulink Design Verifier 3-3
Detect integer overflow with Simulink Design Verifier 3-5
Detect division by zero with Simulink Design Verifier 3-6
Detect out of bound array access with Simulink Design

Verifier . 3-7
Detect violation of minimum and maximum values with

Simulink Design Verifier . 3-8

v

1

Functions — Alphabetical List

1 Functions — Alphabetical List

sldv.assume

Proof assumption function for Stateflow charts and MATLAB Function blocks

Syntax

sldv.assume(expr)

Description

sldv.assume(expr) specifies that expr be true for every evaluation while proving
properties. Use any valid Boolean expression for expr.

This function has no output and no impact on its parenting function, other than any
indirect side effects of evaluating expr. If you issue this function from the MATLAB®

command line, the function has no effect.

Intersperse sldv.assume proof assumptions within MATLAB code or separate the
assumptions into a verification script.

The Proof assumptions option in the Property proving pane applies to proof
assumptions represented with the sldv.assume function, as well as with the Proof
Assumption block.

Input Arguments

expr

MATLAB expression, for example, x > 0

Examples

Specify a property proof objective and proof assumption in a MATLAB Function block:

1-2

 sldv.assume

1 Open the sldvdemo_sbr_verification model and save it as
ex_sldvdemo_sbr_verification.

2 Open the Safety Properties subsystem.

3 Open the MATLAB Property block, which is a MATLAB Function block.

1-3

1 Functions — Alphabetical List

4 At the end of thecheck_reminder function definition, add the line
sldv.assume(Inputs.KEY==0 | 1); so that the last two lines of the function
definition now read:

sldv.prove(implies(activeCond, SeatBeltIcon));

sldv.assume(Inputs.KEY==0 | 1);

5 In the editor, save the updated code.
6 Prove the safety properties. With the model open in the Simulink® Editor, select

the Safety Properties subsystem and choose Analysis > Design Verifier > Prove
Properties > Selected Subsystem.

In the Simulink Editor, you can also right-click the Safety Properties subsystem and
select Design Verifier > Prove Subsystem Properties.

Tutorials
• “Prove Properties in a Model”

Alternatives

Instead of using the sldv.assume function, you can insert a Proof Assumption block
in your model. However, using sldv.assume instead of a Proof Assumption block offers
several benefits, described in “What Is Property Proving?”.

You can also constrain signal values when proving models by using MATLAB for code
generation without using the sldv.assume function. However, using sldv.assume
instead of directly using MATLAB for code generation eliminates the need to:

• Express the assumption with a Simulink block
• Explicitly connect the assumption output to a Simulink block

See Also
sldv.condition | sldv.prove | sldv.test | Proof Assumption | Proof
Objective | Test Condition | Test Objective

Topics
“Prove Properties in a Model”

1-4

 sldv.assume

“Workflow for Proving Model Properties”

Introduced in R2009b

1-5

1 Functions — Alphabetical List

sldvblockreplacement
Replace blocks for analysis

Syntax
[status,newmodel] = sldvblockreplacement(model)

[status,newmodel] = sldvblockreplacement(model,options)

[status,newmodel] = sldvblockreplacement(model,options,showUI)

sldvblockreplacement(model,options)

Description
[status,newmodel] = sldvblockreplacement(model) copies model and replaces
specified model blocks and other model components for a Simulink Design Verifier™
analysis. sldvblockreplacement replaces the blocks of the model according to the
block-replacement rules in the model configuration settings. sldvblockreplacement
returns a handle to the new model in newmodel. If the operation replaces the blocks,
sldvblockreplacement returns a status of 1. Otherwise, it returns 0.

[status,newmodel] = sldvblockreplacement(model,options) replaces the
blocks of model according to the block replacement rules specified in the sldvoptions
object options, and returns a handle to the new model in newmodel.

[status,newmodel] = sldvblockreplacement(model,options,showUI)

performs the same tasks as sldvblockreplacement(model,options). If showUI is
true, errors appear in the Diagnostic Viewer. Otherwise, errors appear at the MATLAB
command line.

Input Arguments
model

Handle to a Simulink model

options

sldvoptions object that specifies analysis parameters

1-6

 sldvblockreplacement

Default: []

showUI

Logical value indicating where to display messages during analysis
true to display messages in the log window
false (default) to display messages in the MATLAB command window

Examples

Replace the blocks in sldvdemo_blockreplacement_unsupportedblocks using the
block-replacement rules specified in opts:
opts = sldvoptions;

opts.BlockReplacement = 'on'

opts.BlockReplacementRulesList = ...

'<FactoryDefaultRules>, custom_rule_switch';

[status, newmodel] = sldvblockreplacement(...

 'sldvdemo_blockreplacement_unsupportedblocks', opts);

Tutorials
• “Replace Multiport Switch Blocks”

See Also
sldvoptions

Topics
“Replace Multiport Switch Blocks”
“Define Custom Block Replacements”

Introduced in R2007a

1-7

1 Functions — Alphabetical List

sldvcompat
Check model for compatibility with analysis

Syntax

status = sldvcompat(model)

status = sldvcompat(subsystem)

status = sldvcompat(subsystem, options)

status = sldvcompat(model, options, showUI, startCov)

Description

status = sldvcompat(model) returns a status of 1 if model is compatible with
Simulink Design Verifier software. Otherwise, sldvcompat returns 0.

status = sldvcompat(subsystem) converts the Simulink atomic
subsystemsubsystem into a temporary model and checks the compatibility of that model
with Simulink Design Verifier software. After the compatibility check, sldvcompat
closes the temporary model.

status = sldvcompat(subsystem, options) checks the subsystem specified by
subsystem for compatibility with the Simulink Design Verifier software using the
sldvoptions object options.

status = sldvcompat(model, options, showUI, startCov) checks the
compatibility of the model with Simulink Design Verifier software. If showUI is true,
errors appear in the Diagnostic Viewer. Otherwise, errors appear at the MATLAB
command line. The analysis ignores all model coverage objectives satisfied in startCov,
a cvdata object.

Input Arguments

model

Handle to a Simulink model

1-8

 sldvcompat

Default: []

subsystem

Handle to an atomic subsystem in a Simulink model

options

sldvoptions object that specifies analysis parameters

Default: []

showUI

Logical value indicating where to display messages during analysis
true to display messages in the log window
false (default) to display messages in the MATLAB command window

startCov

A cvdata object that contains coverage data for the model

Examples
Check the sldvdemo_flipflop model to see if it is compatible with Simulink Design
Verifier software:

sldvdemo_flipflop

status = sldvcompat('sldvdemo_flipflop')

Alternatives
To check if a model is compatible with the Simulink Design Verifier software, in the
Simulink Editor, select Analysis > Design Verifier > Check Compatibility > Model.

To check the compatibility of a subsystem, right-click the subsystem and select Design
Verifier > Check Subsystem Compatibility.

See Also
sldvoptions | sldvrun

1-9

1 Functions — Alphabetical List

Topics
“Check Compatibility of the Example Model”

Introduced in R2007a

1-10

 sldv.condition

sldv.condition

Test condition function for Stateflow charts and MATLAB Function blocks

Syntax

sldv.condition(expr)

Description

sldv.condition(expr) Specifies that expr is true for every time step in a generated
test case. Use any valid Boolean expression for expr.

This function has no output and no impact on its parenting function, other than any
indirect side effects of evaluating expr. If you issue this function from the MATLAB
command line, the function has no effect.

Intersperse sldv.condition test conditions within MATLAB code or separate the
conditions into a verification script.

The Test conditions option in the Test generation pane applies to test conditions
represented with the sldv.condition function, as well as with the Test Condition
block.

Input Arguments

expr

MATLAB expression, for example, x > 0

Examples

Add a test objective and test conditions:

1-11

1 Functions — Alphabetical List

1 Open the sldvdemo_cruise_control model and save it as
ex_sldvdemo_cruise_control.

2 Remove the Test Condition block for the speed block signal. Instead of the Test
Condition block, this example uses sldv.test and sldv.condition.

3 From the User-Defined Functions library, add a MATLAB Function block and:

a Name the block tests.
b Open the block and add the following code:

function define_tests(speed, target)

%#codegen

sldv.condition(speed >= 0 && speed <= 100);

sldv.test(speed > 60 && target > 40 && target < 50);

sldv.test(speed < 20 && target > 50);

c Save the code and close the editor.
d Connect the block to the signal for the speed block and to the signal for the

target block.

1-12

 sldv.condition

4 Generate the test: select Analysis > Design Verifier > Generate Tests > Model.

1-13

1 Functions — Alphabetical List

Tutorials
• “Generate Test Cases for Model Decision Coverage”

Alternatives

Instead of using the sldv.condition function, you can insert a Test Condition block
in your model. However, using sldv.condition instead of a Test Condition block offers
several benefits, described in “What Is Test Case Generation?”.

You can also specify test conditions by using MATLAB for code generation without using
the sldv.condition function. However, using sldv.condition instead of directly
using MATLAB for code generation eliminates the need to:

• Express the constraints with Simulink blocks
• Explicitly connect the condition output to a Simulink block

See Also
sldv.assume | sldv.prove | sldv.test | Proof Assumption | Proof Objective
| Test Condition | Test Objective

Topics
“Generate Test Cases for Model Decision Coverage”
“Workflow for Test Case Generation”

Introduced in R2009b

1-14

 sldvextract

sldvextract

Extract subsystem or subchart contents into new model for analysis

Syntax

newModel = sldvextract(subsystem)

newModel = sldvextract(subchart)

newModel = sldvextract(subsystem, showModel)

newModel = sldvextract(subchart, showModel)

Description

newModel = sldvextract(subsystem) extracts the contents of the atomic subsystem
subsystem and creates a model for the Simulink Design Verifier software to analyze.
sldvextract returns the name of the new model in newModel. sldvextract uses the
subsystem name for the model name, appending a numeral to the model name if that
model name already exists.

newModel = sldvextract(subchart) extracts the contents of the atomic subchart
subchart and creates a model for the Simulink Design Verifier software to analyze.
subchart should specify the full path of the Atomic Subchart. sldvextract uses the
subchart name for the model name, appending a numeral to the model name if that
model name already exists.

Note: If the atomic subchart calls an exported graphical function that is outside the
subchart, sldvextract creates the model, but the new model will not compile.

newModel = sldvextract(subsystem, showModel) and newModel =
sldvextract(subchart, showModel) opens the extracted model if you set
showModel to true. The extracted model is only loaded if showModel is set to false.

1-15

1 Functions — Alphabetical List

Input Arguments

subsystem

Full path to the atomic subsystem

subchart

Full path to the Stateflow® atomic subchart

showModel

Boolean that indicates whether to display the extracted model

Default: True

Output Arguments

newModel

Name of the new model

Examples

Extract the atomic subsystem, Bus Counter, from the sldemo_mdlref_conversion
model and copy it into a new model:
open_system('sldemo_mdlref_conversion');

newmodel = sldvextract('sldemo_mdlref_conversion/Bus Counter', true);

Extract the atomic subchart, Sensor1, from the sf_atomic_sensor_pair model and
copy it into a new model:
open_system('sf_atomic_sensor_pair');

newmodel = sldvextract('sf_atomic_sensor_pair/RedundantSensors/Sensor1',...

 true);

Introduced in R2007a

1-16

 sldvgencov

sldvgencov
Analyze models to obtain missing model coverage

Syntax
[status, cvdo] = sldvgencov(model, options, showUI, startCov)

[status, cvdo] = sldvgencov(block, options, showUI, startCov)

[status, cvdo, filenames] = sldvgencov(model, options, showUI,

startCov)

[status, cvdo, filenames, newmodel] = sldvgencov(block, options,

showUI, startCov)

Description
[status, cvdo] = sldvgencov(model, options, showUI, startCov) analyzes
model using the sldvoptions object options.

[status, cvdo] = sldvgencov(block, options, showUI, startCov) analyzes
the atomic subsystem block using the sldvoptions object options.

[status, cvdo, filenames] = sldvgencov(model, options, showUI,

startCov) analyzes model and returns the file names that the software created in
filenames.

[status, cvdo, filenames, newmodel] = sldvgencov(block, options,

showUI, startCov) analyzes block using the sldvoptions object options. The
software returns a handle to newmodel, which contains a copy of the block subsystem.

Input Arguments

block

Handle to an atomic subsystem in a Simulink model

model

Handle to a Simulink model

1-17

1 Functions — Alphabetical List

Default: []

options

sldvoptions object that specifies analysis parameters

Default: []

showUI

Logical value indicating where to display messages during analysis
true to display messages in the log window
false (default) to display messages in the MATLAB command window

startCov

cvdata object. The analysis ignores model coverage objectives already satisfied in
startCov.

Default: []

Output Arguments

cvdo

cvdata object containing coverage data for new tests

filenames

A structure whose fields list the file names resulting from the analysis:

DataFile MAT-file with raw input data
HarnessModel Simulink harness model
Report HTML report of the results
ExtractedModel Simulink model extracted from subsystem
BlockReplacementModel Simulink model obtained after block

replacements

status

Logical value that indicates if the analysis collected model coverage

1-18

 sldvgencov

true

false

Examples

Analyze the Cruise Control model and simulate a version of that model using data from
test cases from the previous analysis. Compare the model coverage data, and collect the
coverage missing from the sldvdemo_cruise_control_mod model analysis:
opts = sldvoptions;

% Generate test cases

opts.Mode = 'TestGeneration';

% Specify MCDC coverage

opts.ModelCoverageObjectives = 'MCDC';

% Don't create harness model

opts.SaveHarnessModel = 'off';

% or report

opts.SaveReport = 'off';

open_system 'sldvdemo_cruise_control';

[status, files] = sldvrun('sldvdemo_cruise_control', opts);

open_system 'sldvdemo_cruise_control_mod';

[outData, startCov] = sldvruntest('sldvdemo_cruise_control_mod',...

 files.DataFile, [], true);

cvhtml('Coverage with the original test suite', startCov);

[status, covData, files] = sldvgencov('sldvdemo_cruise_control_mod',...

 opts, false, startCov);

Tutorials
• “Generate Test Cases for Model Decision Coverage”

See Also
sldvruntest | sldvmergeharness | sldvoptions | sldvrun

Topics
“Generate Test Cases for Model Decision Coverage”

Introduced in R2007a

1-19

1 Functions — Alphabetical List

sldvharnessopts

Default options for sldvmakeharness

Syntax

harnessopts = sldvharnessopts

Description

harnessopts = sldvharnessopts generates the default configuration for running
sldvmakeharness.

Output Arguments

harnessopts

A structure whose fields specify the default options for sldvmakeharness when creating
a Simulink Design Verifier harness model.

The harnessopts structure can have the following fields. If you do not specify values,
the configuration uses default values.

Field Description

harnessFilePath Specifies the file path for creating the
harness model. If an invalid path is
specified, sldvmakeharness does not save
the harness model, but it creates and opens
the harness model. If this option is not
specified, sldvmakeharness generates
a new harness model and saves it in the
MATLAB current folder.

Default: ''

1-20

 sldvharnessopts

Field Description

modelRefHarness Generates the test harness model that
includes model in a Model block. When
false, the test harness model includes a
copy of model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the

harness model has signals only for input
signals used in the model. model must
be compatible with the Simulink Design
Verifier software to detect the used input
signals.

Default: false

Examples

Create a test harness for the sldvdemo_cruise_control model using the default
options:

open_system('sldvdemo_cruise_control');

harnessOpts = sldvharnessopts;

[harnessfile] = sldvmakeharness('sldvdemo_cruise_control',...

 '', harnessOpts);

See Also
sldvmakeharness

Introduced in R2010b

1-21

1 Functions — Alphabetical List

sldvhighlight
Highlight model using data from Simulink Design Verifier analysis

Syntax

sldvhighlight

sldvhighlight(model)

sldvhighlight(model, dataFile)

Description

sldvhighlight highlights the current model using its active Simulink Design Verifier
analysis results. If there are no active results, sldvhighlight loads the latest analysis
results for the current model. The function highlights the model using these results.

sldvhighlight(model) highlights model using its active Simulink Design Verifier
analysis results. If there are no active results, sldvhighlight loads the latest analysis
results for model. The function highlights the model using these results.

sldvhighlight(model, dataFile) loads the Simulink Design Verifier analysis
results from dataFile. The function highlights model using these results.

Examples

Highlight Active Analysis Results on Current Model

Highlight the current model with its active Simulink Design Verifier analysis results.

Open the sldvdemo_debounce_modelcov example model.

open_system('sldvdemo_debounce_modelcov')

Run test generation analysis on the example model using its default settings.

status = sldvrun('sldvdemo_debounce_modelcov')

Starting test generation for model 'sldvdemo_debounce_modelcov'

1-22

 sldvhighlight

Compiling model... done

Translating model... done

'sldvdemo_debounce_modelcov' is compatible with Simulink Design Verifier.

Generating tests...

...................

Completed normally.

Generating output files:

 Data file:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_sldvdata.mat

 Harness model:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_harness.mdl

Results generation completed.

status =

 1

Highlight the results of the analysis on the current model,
sldvdemo_debounce_modelcov.

sldvhighlight

The example model is highlighted with the analysis results. The Simulink Design
Verifier Results Inspector opens.

In the model, click on a highlighted object to view detailed analysis results for that object
in the Results Inspector.

Highlight Active Analysis Results on Specified Model

Highlight a specified model with its active Simulink Design Verifier analysis results.

Open the sldvdemo_debounce_modelcov example model.

open_system('sldvdemo_debounce_modelcov')

Run test generation analysis on the example model using its default settings.

status = sldvrun('sldvdemo_debounce_modelcov')

Starting test generation for model 'sldvdemo_debounce_modelcov'

Compiling model... done

Translating model... done

'sldvdemo_debounce_modelcov' is compatible with Simulink Design Verifier.

1-23

1 Functions — Alphabetical List

Generating tests...

...................

Completed normally.

Generating output files:

 Data file:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_sldvdata.mat

 Harness model:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_harness.mdl

Results generation completed.

status =

 1

Highlight the results of the analysis on sldvdemo_debounce_modelcov.

sldvhighlight('sldvdemo_debounce_modelcov')

The example model is highlighted with the analysis results. The Simulink Design
Verifier Results Inspector opens.

In the model, click on a highlighted object to view detailed analysis results for that object
in the Results Inspector.

Highlight Analysis Results from Data File on Specified Model

Highlight a specified model with its Simulink Design Verifier analysis results, loaded
from a data file.

Open the sldvdemo_debounce_modelcov example model.

open_system('sldvdemo_debounce_modelcov')

Run test generation analysis on the example model using its default settings.

status = sldvrun('sldvdemo_debounce_modelcov')

Starting test generation for model 'sldvdemo_debounce_modelcov'

Compiling model... done

Translating model... done

'sldvdemo_debounce_modelcov' is compatible with Simulink Design Verifier.

Generating tests...

...................

Completed normally.

Generating output files:

1-24

 sldvhighlight

 Data file:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_sldvdata.mat

 Harness model:

 pwd\sldv_output\sldvdemo_debounce_modelcov\ ...

 sldvdemo_debounce_modelcov_harness.mdl

Results generation completed.

status =

 1

Close the example model and the harness model that the analysis produced.

bdclose('sldvdemo_debounce_modelcov')

bdclose('sldvdemo_debounce_modelcov_harness')

Reopen the example model.

open_system('sldvdemo_debounce_modelcov')

Highlight the example model with its analysis results, stored in the data file that the
analysis created.

sldvhighlight('sldvdemo_debounce_modelcov',[pwd ...

'\sldv_output\sldvdemo_debounce_modelcov\' ...

'sldvdemo_debounce_modelcov_sldvdata.mat'])

The Simulink Design Verifier Results Inspector opens. The model is highlighted to show
the results of the analysis.

In the model, click on a highlighted object to view detailed analysis results for that object
in the Results Inspector.

Input Arguments

model — Name or handle of model to highlight
character vector | handle

Name of model or handle of model to highlight.
Example: 'sldvdemo_cruise_control'

Example: 'sldvdemo_flipflop'

1-25

1 Functions — Alphabetical List

dataFile — Name of analysis data file
character vector

Name of Simulink Design Verifier analysis data file.

For more information about analysis data files, see “Simulink Design Verifier Data
Files”.
Example: 'results.mat'

Example: 'sldv_output\sldvdemo_flipflop
\sldvdemo_flipflop_sldvdata.mat'

Example: 'sldv_output\my_model\my_model_sldvdata.mat'

See Also

See Also
sldvloadresults | sldvreport

Topics
“Highlighted Results on the Model”
“Simulink Design Verifier Data Files”

Introduced in R2013b

1-26

 sldvisactive

sldvisactive
Check if Simulink Design Verifier software is updating block diagram

Syntax
status = sldvisactive

status = sldvisactive(model)

status = sldvisactive(block)

Description
status = sldvisactive checks if the Simulink Design Verifier software is actively
analyzing the current Simulink model. If the software is actively analyzing the current
model, sldvisactive returns 1. Otherwise, it returns 0.

status = sldvisactive(model) checks if the Simulink Design Verifier software is
actively analyzing model.

status = sldvisactive(block) checks if the Simulink Design Verifier software is
actively analyzing the model that contains block.

sldvisactive customizes the model analysis in block and model callback functions, or
mask initialization.

Input Arguments
model

Full path name or handle to a Simulink model

block

Full path name or handle to a Simulink block

Examples
Eliminate blocks that are incompatible with the Simulink Design Verifier software:

1-27

1 Functions — Alphabetical List

1 Create a Simulink model and save it as ex_environment_controller.

2 Right-click the Environment Controller block and select View Mask.
3 Click the Initialization tab and add the following command, if it does not exist:

switch_mode = rtwenvironmentmode(bdroot(gcbh)) || ...

 (exist('sldvisactive','file')~=0 && ...

 sldvisactive(bdroot(gcbh)));

The Simulink Design Verifier software does not support Band-Limited White Noise
blocks. If the software is analyzing the mEnvControl model the mask initialization
of the Environment Controller block:

• Sets the pass-through mode to pass the Sim signal to the output port.
• Eliminates the Coder port, which is incompatible with the Simulink Design

Verifier software.
4 Save the changes to the ex_environment_controller model.

Introduced in R2009a

1-28

 sldvloadresults

sldvloadresults
Load Simulink Design Verifier analysis results for model

Syntax

status = sldvloadresults(model)

status = sldvloadresults(model, dataFile)

Description

status = sldvloadresults(model) loads the most recently generated Simulink
Design Verifier analysis results for model into the Model Explorer. If model is not
already open, sldvloadresults opens model. The function loads the results from the
data file specified by Analysis > Design Verifier > Options > Output directory and
Analysis > Design Verifier > Options > Data file name.

status = sldvloadresults(model, dataFile) loads analysis results for
model from dataFile into the Model Explorer. If model is not already open,
sldvloadresults opens model. The function loads the results from dataFile.

Examples

Load Active Results for Specified Model

Load active Simulink Design Verifier analysis results for a specified model.

Open the sldvdemo_flipflop example model.

open_system('sldvdemo_flipflop')

Run test generation analysis on the example model using its default settings.

status = sldvrun('sldvdemo_flipflop')

Starting test generation for model 'sldvdemo_flipflop'

Compiling model... done

Translating model... done

1-29

1 Functions — Alphabetical List

'sldvdemo_flipflop' is compatible with Simulink Design Verifier.

Generating tests...

............

Completed normally.

Generating output files:

 Data file:

 pwd\sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat

Results generation completed.

status =

 1

Close the example model.

bdclose('sldvdemo_flipflop')

Reopen the example model. Load its most recently generated analysis results.

sldvloadresults('sldvdemo_flipflop')

ans =

 1

You can view the loaded analysis results in the Model Explorer or in the Simulink Design
Verifier Results Summary window. To open this window, in the Simulink Editor, select
Analysis > Design Verifier > Results > Active.

Load Results from Data File for Specified Model

Load Simulink Design Verifier analysis results from a data file for a specified model.

Open the sldvdemo_flipflop example model.

open_system('sldvdemo_flipflop')

Run test generation analysis on the example model using its default settings.

status = sldvrun('sldvdemo_flipflop')

Starting test generation for model 'sldvdemo_flipflop'

Compiling model... done

Translating model... done

'sldvdemo_flipflop' is compatible with Simulink Design Verifier.

Generating tests...

............

1-30

 sldvloadresults

Completed normally.

Generating output files:

 Data file:

 pwd\sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat

Results generation completed.

status =

 1

Close the example model.

bdclose('sldvdemo_flipflop')

Reopen the example model. Load analysis results for the model from the data file that
the analysis generated.

sldvloadresults('sldvdemo_flipflop',[pwd '\sldv_output ...

\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'])

ans =

 1

You can view the loaded analysis results in the Model Explorer or in the Simulink Design
Verifier Results Summary window. To open this window, in the Simulink Editor, select
Analysis > Design Verifier > Results > Active.

Input Arguments

model — Name or handle of model for which to load analysis results
character vector | handle

Name of model or handle of model for which to load analysis results.
Example: 'sldvdemo_cruise_control'

Example: 'sldvdemo_flipflop'

dataFile — Name of data file containing analysis results
character vector

Name of data file containing analysis results. dataFile must contain analysis results
for the specified model.

1-31

1 Functions — Alphabetical List

If dataFile was generated with a previous version of model, when you load the results
from dataFile, you might see unexpected effects. To avoid inconsistencies between your
model and analysis results data, when you specify dataFile, choose a data file that
contains results from the same version of model.

For more information about analysis data files, see “Simulink Design Verifier Data
Files”.
Example: 'results.mat'

Example: 'sldv_output\sldvdemo_flipflop
\sldvdemo_flipflop_sldvdata.mat'

Example: 'sldv_output\my_model\my_model_sldvdata.mat'

Output Arguments

status — Outcome of attempt to load results
logical

Outcome of attempt to load results, returned as a logical value.

Logical Value Returned Status of Loaded Results

true Processing completed normally
false An error occurred

See Also

See Also
sldvhighlight | sldvreport

Topics
“Review Analysis Results”
“Simulink Design Verifier Data Files”

Introduced in R2013b

1-32

 sldvlogsignals

sldvlogsignals
Log simulation input port values

Syntax
data = sldvlogsignals(model_block)

data = sldvlogsignals(harness_model)

data = sldvlogsignals(harness_model, test_case_index)

Note: sldvlogsignals replaces sldvlogdata. Use sldvlogsignals instead.

Description
data = sldvlogsignals(model_block) simulates the model that contains
model_block and logs the input signals to the model_block block. model_block must
be a Simulink Model block. sldvlogsignals records the logged data in the structure
data.

data = sldvlogsignals(harness_model) simulates every test case in
harness_model and logs the input signals to the Test Unit block in the harness
model. You must generate harness_model using Simulink Design Verifier analysis,
sldvmakeharness, or slvnvmakeharness.

data = sldvlogsignals(harness_model, test_case_index) simulates
every test case in the Signal Builder block of the harness_model that is specified by
test_case_index. sldvlogsignals logs the input signals to the Test Unit block in
the harness model. If you omit test_case_index, sldvlogsignals simulates every
test case in the Signal Builder.

Input Arguments
model_block

Full block path name or handle to a Simulink Model block

1-33

1 Functions — Alphabetical List

harness_model

Name or handle to a harness model that the Simulink Design Verifier software,
sldvmakeharness, or slvnvmakeharness creates

test_case_index

Array of integers that specifies which test cases in the Signal Builder block of the
harness model to simulate

Output Arguments

data

Structure that contains the logged data

Examples

Use logged signals to create a harness model in order to visualize the data:

1 Simulate the CounterB Model block, which references the
sldemo_mdlref_counter model, in the context of the sldemo_mdlref_basic
model. Then log the data:

open_system('sldemo_mdlref_basic');

data = sldvlogsignals('sldemo_mdlref_basic/CounterB');

2 Create a harness model for sldemo_mdlref_counter using the logged data and the
default harness options:
load_system('sldemo_mdlref_counter');

harnessOpts = sldvharnessopts;

[~, harnessFilePath] = ...

 sldvmakeharness('sldemo_mdlref_counter', data, harnessOpts);

See Also

Topics
“Extend Test Cases for Model with Temporal Logic”

1-34

 sldvlogsignals

“Extend Test Cases for Closed-Loop System”

Introduced in R2010b

1-35

1 Functions — Alphabetical List

sldvmakeharness
Generate harness model

Syntax

[savedHarnessFilePath] = sldvmakeharness(model)

[savedHarnessFilePath] = sldvmakeharness(model, dataFile)

[savedHarnessFilePath] = sldvmakeharness(model, dataFile,

harnessOpts)

Description

[savedHarnessFilePath] = sldvmakeharness(model) generates a test
harness from model, which is a handle to a Simulink model or the model name.
sldvmakeharness returns the path and file name of the generated harness model in
savedHarnessFilePath. sldvmakeharness creates an empty harness model; the
test harness includes one default test case that specifies the default values for all input
signals.

[savedHarnessFilePath] = sldvmakeharness(model, dataFile) generates a
test harness from the data file dataFile.

[savedHarnessFilePath] = sldvmakeharness(model, dataFile,

harnessOpts) generates a test harness from model using the dataFile and
harnessOpts, which specifies the harness creation options. Requires '' for dataFile if
dataFile is not available.

If the software generates a harness, it does not imply that your model is compatible with
the Simulink Design Verifier software.

Input Arguments

model

Handle to a Simulink model or the model name

1-36

 sldvmakeharness

dataFile

Name of the sldvData file.

Default: ''

harnessOpts

A structure whose fields specify the configuration for sldvmakeharness:

Field Description

harnessFilePath Specifies the file path for creating the
harness model. If an invalid path is
specified, sldvmakeharness does not save
the harness model, but it creates and opens
the harness model. If this option is not
specified, sldvmakeharness generates
a new harness model and saves it in the
MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that

includes model in a Model block. When
false, the test harness model includes a
copy of model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the

harness model has signals only for input
signals used in the model. model must
be compatible with the Simulink Design
Verifier software to detect the used input
signals.

Default: false

Note: To create a default harnessOpts object, use sldvharnessopts.

1-37

1 Functions — Alphabetical List

Output Arguments

savedHarnessFilePath

The path and file name of the generated harness model

Examples

Create a test harness for the sldvdemo_cruise_control model using the default
options:
open_system('sldvdemo_cruise_control');

harnessopts=sldvharnessopts();

[harnessfile] = sldvmakeharness('sldvdemo_cruise_control', '', harnessopts);

Alternatives

sldvmakeharness creates a test harness model without analyzing the model. To
analyze the model and create a test harness:

1 In the Simulink Editor, select Analysis > Design Verifier > Options.

The Configuration Parameters dialog box opens. Under the Select tree, the Design
Verifier node is expanded.

2 Under Design Verifier, select the Results node. Under Harness model options,
set the desired options.

3 Click OK to save your changes and close the Configuration Parameters dialog box.
4 In the Simulink Editor, select Analysis > Design Verifier > Generate Tests to

run a test-generation analysis.

See Also
sldvharnessopts | sldvrun | sldvmergeharness | slvnvharnessopts |
slvnvmakeharness | slvnvmergeharness

Introduced in R2009b

1-38

 sldvmergeharness

sldvmergeharness

Merge test cases and initializations into one harness model

Note: sldvmergeharness replaces sldvharnessmerge. Use sldvmergeharness
instead.

Syntax

status = sldvmergeharness(name, models, initialization_commands)

Description

status = sldvmergeharness(name, models, initialization_commands)

collects the test data and initialization commands from each test harness model in
models. sldvharnessmerge saves the data and initialization commands in name, which
is a handle to the new model.

If name does not exist, sldvmergeharness creates it as a copy of the first model in
models. sldvmergeharness then merges data from other models listed in models into
this model. If you create name from a previous sldvmergeharness run, subsequent
runs of sldvmergeharness for name maintain the structure and initialization from the
earlier run. If name matches an existing Simulink model, sldvmergeharness merges
the test data from models into name.

sldvmergeharness assumes that name and the rest of the models in models have
only one Signal Builder block on the top level. If a model in models does not meet this
restriction or its top-level Signal Builder block does not have the same number of signals
as the top-level Signal Builder block in name, sldvmergeharness does not merge that
model's test data into name.

Use sldvmergeharness with sldvgencov to combine test cases that use different sets
of parameter values.

1-39

1 Functions — Alphabetical List

Input Arguments

name

Name of the new harness model, to be stored in the default MATLAB folder

Default:

models

A cell array that represents harness model names

initialization_commands

A cell array the same length as models. initialization_commands defines parameter
settings for the test cases of each test harness model.

Output Arguments

status

If the operation works, sldvmergeharness returns a status of 1. Otherwise, it returns
0.

Examples

Analyze the sldvdemo_cruise_control model for decision and for full coverage and
merge the two test harnesses:
model = 'sldvdemo_cruise_control';

open_system(model)

% Collect decision coverage

opts1 = sldvoptions;

opts1.Mode = 'TestGeneration';

opts1.ModelCoverageObjectives = 'Decision';

opts1.HarnessModelFileName = 'first_harness';

opts1.SaveHarnessModel = 'on';

sldvrun(model, opts1);

% Collect full coverage

opts2 = sldvoptions;

opts2.Mode = 'TestGeneration';

opts2.ModelCoverageObjectives = 'ConditionDecision';

1-40

 sldvmergeharness

opts2.HarnessModelFileName = 'second_harness';

opts2.SaveHarnessModel = 'on';

sldvrun(model, opts2);

% Merge the two harness files:

status = sldvmergeharness('new_harness_model', {'first_harness',...

 'second_harness'});

See Also
sldvgencov | sldvrun | sldvmakeharness

Introduced in R2010b

1-41

1 Functions — Alphabetical List

sldvoptions
Create design verification options object

Syntax
options = sldvoptions

options = sldvoptions(model)

Description
options = sldvoptions returns an object options that contains the default values
for the design verification parameters.

options = sldvoptions(model) returns the object options attached to model.

Input Arguments
model

Name or handle to a Simulink model

Output Arguments
options

The following table describes the parameters that comprise a Simulink Design Verifier
options object.

Parameter Description Values

AbsoluteTolerance Specify an absolute value
for tolerance to be used in
relational boundary tests.

double {'1.0e-05'}

Assertions Specify whether Assertion
blocks in your model are
enabled or disabled.

'EnableAll'

'DisableAll'

'UseLocalSettings' (default)

1-42

 sldvoptions

Parameter Description Values

AutomaticStubbing Specify whether or not
Simulink Design Verifier
software should ignore
unsupported blocks and
functions and proceed with the
analysis.

'on' (default)
'off'

BlockReplacement Specify whether the Simulink
Design Verifier software
replaces blocks in a model
before its analysis.

When set to 'on', this
parameter enables
BlockReplacementModel-

FileName and
BlockReplacementRules-

List.

'on'

'off' (default)

BlockReplacementModel-

FileName

Specify a folder and file name
for the model that results after
applying block replacement
rules.

This parameter is enabled
when BlockReplacement is
set to 'on'.

character array

'$ModelName$_replacement'

(default)

BlockReplacementRules-

List

Specify a list of block
replacement rules that the
Simulink Design Verifier
software executes before its
analysis.

This parameter is enabled
when BlockReplacement is
set to 'on'.

character array

'<FactoryDefaultRules>'

(default)

1-43

1 Functions — Alphabetical List

Parameter Description Values

CoverageDataFile Specify a folder and file name
for the file that contains
data about satisfied coverage
objectives.

This parameter is enabled
when IgnoreCovSatisfied is
set to 'on'.

character array

'' (default)

CovFilter For test generation analysis,
specify whether to ignore test
objectives stored in coverage
filter file.

When set to on, this parameter
enables CovFilterFileName.

'on'

'off' (default)

CovFilterFileName For test generation, specify
name for coverage filter file
that contains test objectives to
exclude from analysis.

This parameter is enabled
when CovFilter is set to
'on'.

character array

'' (default)

DataFileName Specify a folder and file name
for the MAT-file that contains
the data generated during
the analysis, stored in an
sldvData structure.

This parameter is enabled
when SaveDataFile is set to
'on'.

character array

'$ModelName$_sldvdata'

(default)

1-44

 sldvoptions

Parameter Description Values

DesignMinMaxCheck Specify whether to check
that the intermediate and
output signals in your model
are within the range of user-
specified minimum and
maximum constraints.

Note: This parameter
is disabled when
DetectDeadLogic is set to
'on'.

'on'

'off' (default)

DesignMinMaxConstraints Specify whether or not
Simulink Design Verifier
software should generate test
cases that consider specified
minimum and maximum values
as constraints for input signals
in your model.

'on' (default)
'off'

DetectActiveLogic Specify whether to analyze
your model for active logic.

Note: This parameter
is enabled only if
DetectDeadLogic is set to
'on'.

'on'

'off' (default)

DetectDeadLogic Specify whether to analyze
your model for dead logic.

Note: When set to 'on',
this parameter disables
DetectDivisionByZero,
DetectIntegerOverflow,
DetectOutOfBounds, and
DesignMinMaxCheck.

'on'

'off' (default)

1-45

1 Functions — Alphabetical List

Parameter Description Values

DetectDivisionByZero Specify whether to analyze
your model for division-by-zero
errors.

Note: This parameter
is disabled when
DetectDeadLogic is set to
'on'.

'on' (default)
'off'

DetectIntegerOverflow Specify whether to analyze
your model for integer and
fixed-point data overflow
errors.

Note: This parameter
is disabled when
DetectDeadLogic is set to
'on'.

'on' (default)
'off'

DetectOutOfBounds Specify whether to analyze
your model for out of bound
array access errors.

Note: This parameter
is disabled when
DetectDeadLogic is set to
'on'.

'on'

'off' (default)

DisplayReport Display the report that the
Simulink Design Verifier
analysis generates after
completing its analysis.

This parameter is enabled
when SaveReport is set to
'on'.

'on' (default)
'off'

1-46

 sldvoptions

Parameter Description Values

DisplayResultsOnModel Specify whether to display
analysis results by highlighting
the model and providing
context-sensitive details about
the results.

'on'

'off' (default)

DisplayUnsatisfiable-

Objectives

Specify whether to display
warnings if the analysis detects
unsatisfiable test objectives.

This parameter is enabled
when Mode is set to
'TestGeneration'.

'on'

'off' (default)

1-47

1 Functions — Alphabetical List

Parameter Description Values

ExistingTestFile Specify a folder and file name
for the MAT-file that contains
the logged test case data.

This parameter is enabled
when Mode is set to
'TestGeneration' and
ExtendExistingTests is set
to 'on'.

Note: When you configure
Simulink Design Verifier to
treat parameters as variables
in its analysis, you cannot
also use the analysis to
extend existing test cases.
If you specify your model to
extend existing test cases with
ExistingTestFile and apply
parameter configurations with
ParametersConfigFileName

or the Parameter Configuration
table, when you attempt to
perform Simulink Design
Verifier analysis, the software
reports that your model is
incompatible. This occurs
because the existing test cases
do not include corresponding
parameter values.

character array

'' (default)

1-48

 sldvoptions

Parameter Description Values

ExtendExistingTests Extend the Simulink Design
Verifier analysis by importing
test cases logged from a
harness model or a closed-loop
simulation model.

When set to 'on', this
parameter enables
ExistingTestFile and
IgnoreExistTestSatisfied.

This parameter is enabled
when Mode is set to
'TestGeneration'.

Note: When you configure
Simulink Design Verifier to
treat parameters as variables
in its analysis, you cannot
also use the analysis to
extend existing test cases.
If you specify your model to
extend existing test cases with
ExistingTestFile and apply
parameter configurations with
ParametersConfigFileName

or the Parameter Configuration
table, when you attempt to
perform Simulink Design
Verifier analysis, the software
reports that your model is
incompatible. This occurs
because the existing test cases
do not include corresponding
parameter values.

'on'

'off' (default)

1-49

1 Functions — Alphabetical List

Parameter Description Values

HarnessModelFileName Specify a folder and file name
for the harness model.

This parameter is enabled
when SaveHarnessModel is
set to 'on'.

character array

'$ModelName$_harness'

(default)

IgnoreCovSatisfied Specify to analyze the model,
ignoring satisfied coverage
objectives, as specified in
CoverageDataFile.

'on'

'off' (default)

IgnoreExistTestSatisfied Ignore the coverage objectives
satisfied by the logged test
cases in ExistingTestFile.

This parameter is enabled
when Mode is set to
'TestGeneration' and
ExtendExistingTests is set
to 'on'.

'on' (default)
'off'

IncludeRelationalBoundary Specify generation of test cases
that satisfy relational boundary
objectives.

'on'

'off' (default)

MakeOutputFilesUnique Specify whether the Simulink
Design Verifier software makes
its output file names unique by
appending a numeric suffix.

'on' (default)
'off'

MaxProcessTime Specify the maximum time
(in seconds) that the Simulink
Design Verifier software spends
analyzing a model.

double

'300' (default)

1-50

 sldvoptions

Parameter Description Values

MaxTestCaseSteps Specify the maximum
number of simulation
steps the Simulink Design
Verifier software takes when
attempting to satisfy a test
objective.

The analysis uses the
MaxTestCaseSteps parameter
during certain parts of the
test-generation analysis to
bound the number of steps that
test generation uses. When
you set a small value for this
parameter, the parts of the
analysis that are bounded
complete in less time. When
you set a larger value, the
bounded parts of the analysis
take longer, but it is possible
for these parts of the analysis
to generate longer test cases.

To achieve the best
performance, set the
MaxTestCaseSteps parameter
to a value just large enough to
bound the longest required test
case, even if the test cases that
are ultimately generated are
longer than this value.

Note: When you set the
TestSuiteOptimization

parameter to
'LongTestCases', the
analysis uses successive
passes of test generation

int32

'500' (default)

1-51

1 Functions — Alphabetical List

Parameter Description Values

to extend a potential test
case so that it satisfies more
objectives. When this happens,
the analysis applies the
MaxTestCaseSteps parameter
to each individual iteration of
test generation.

This parameter is enabled
when Mode is set to
'TestGeneration'.

MaxViolationSteps Specify the maximum number
of simulation steps over which
the Simulink Design Verifier
software searches for property
violations.

This parameter is enabled
whenMode is set to
'PropertyProving' and
when ProvingStrategy is
set to 'FindViolation' or
'ProveWithViolation-

Detection'.

int32

'20' (default)

Mode Specify the analysis mode for
the Simulink Design Verifier
software.

'TestGeneration' (default)
'PropertyProving'

'DesignErrorDetection'

1-52

 sldvoptions

Parameter Description Values

ModelCoverageObjectives Specify the type of model
coverage that the Simulink
Design Verifier software
attempts to achieve.

Note: When
ModelCoverageObjectives

is set to 'MCDC', the Simulink
Design Verifier software
automatically enables every
coverage objective for decision
coverage and condition
coverage as well. Similarly,
enabling coverage for condition
coverage causes every decision
and condition coverage outcome
to be enabled.

This parameter is enabled
when Mode is set to
'TestGeneration'.

'None'

'Decision'

'ConditionDecision'

(default)
'MCDC'

ModelReferenceHarness Use a Model block to reference
the model to run in the harness
model.

'on'

'off' (default)

OutputDir Specify a path name to which
the Simulink Design Verifier
software writes its output.

character array

'sldv_output/$ModelName$'

(default)
Parameters Specify whether the Simulink

Design Verifier software uses
parameter configurations when
analyzing a model.

When set to 'on', this
parameter enables
ParametersConfigFileName.

'on'

'off' (default)

1-53

1 Functions — Alphabetical List

Parameter Description Values

ParametersConfigFileName Specify a MATLAB function
that defines parameter
configurations for a model.

This parameter is enabled
when Parameters
is set to 'on'. This
parameter is disabled when
ParametersUseConfig is set
to 'on'.

Note: When you configure
Simulink Design Verifier to
treat parameters as variables
in its analysis, you cannot
also use the analysis to
extend existing test cases.
If you specify your model to
extend existing test cases with
ExistingTestFile and apply
parameter configurations with
ParametersConfigFileName

or the Parameter Configuration
table, when you attempt to
perform Simulink Design
Verifier analysis, the software
reports that your model is
incompatible. This occurs
because the existing test cases
do not include corresponding
parameter values.

character array

'sldv_params_template.m'

(default)

1-54

 sldvoptions

Parameter Description Values

ParametersUseConfig Specify to use the Parameter
Configuration table to define
parameter configurations for a
model.

When set to 'on', this
parameter disables
ParametersConfigFileName.

Note: When you configure
Simulink Design Verifier to
treat parameters as variables
in its analysis, you cannot
also use the analysis to
extend existing test cases.
If you specify your model to
extend existing test cases with
ExistingTestFile and apply
parameter configurations with
ParametersConfigFileName

or the Parameter Configuration
table, when you attempt to
perform Simulink Design
Verifier analysis, the software
reports that your model is
incompatible. This occurs
because the existing test cases
do not include corresponding
parameter values.

'on'

'off' (default)

ProofAssumptions Specify whether Proof
Assumption blocks in your
model are enabled or disabled.

'EnableAll'

'DisableAll'

'UseLocalSettings' (default)
ProvingStrategy Specify the strategy that the

Simulink Design Verifier
software uses when proving
properties.

'FindViolation'

'Prove' (default)
'ProveWithViolationDetection'

1-55

1 Functions — Alphabetical List

Parameter Description Values

RandomizeNoEffectData Specify whether to use random
values instead of zeros for input
signals that have no impact on
test or proof objectives.

This parameter is enabled
when SaveDataFile is set to
'on'.

'on'

'off' (default)

RelativeTolerance Specify a relative value
for tolerance to be used in
relational boundary tests.

double {'0.01'}

ReportFileName Specify a folder and file name
for the report that Simulink
Design Verifier analysis
generates.

This parameter is enabled
when SaveReport is set to
'on'.

character array

'$ModelName$_report'

(default)

ReportIncludeGraphics Includes screen shots of
properties in the Simulink
Design Verifier report. Only
valid in property-proving mode.

This parameter is enabled
when SaveReport is set
to 'on' and Mode is set to
'PropertyProving'.

'on'

'off' (default)

1-56

 sldvoptions

Parameter Description Values

SaveDataFile Save the test data that the
Simulink Design Verifier
analysis generates to a MAT-
file.

When set to 'on', this
parameter enables
DataFileName,
SaveExpectedOutput, and
RandomizeNoEffectData.

'on' (default)
'off'

SaveExpectedOutput Simulate the model using test
case signals and include the
output values in the Simulink
Design Verifier data file.

This parameter is enabled
when SaveDataFile is set to
'on'.

'on'

'off' (default)

SaveHarnessModel Create a harness model
generated by the Simulink
Design Verifier analysis.

Note: When SaveReport is set
to 'on', this parameter must
also be set to 'on'.

When set to 'on', this
parameter enables
HarnessModelFileName.

'on'

'off' (default)

1-57

1 Functions — Alphabetical List

Parameter Description Values

SaveReport Generate and save a Simulink
Design Verifier report.

Note: When this
parameter is set to 'on',
SaveHarnessModel must also
be set to 'on'.

When set to 'on', this
parameter enables
ReportFileName,
ReportIncludeGraphics,
and DisplayReport.

'on'

'off' (default)

SFcnSupport Enable support for S-functions
that have been compiled to
be compatible with Simulink
Design Verifier. To compile S-
functions to be compatible with
Simulink Design Verifier, see
“Support Limitations for S-
Functions”.

'on' (default)
'off'

TestConditions Specify whether Test Condition
blocks in your model are
enabled or disabled.

This parameter is enabled
when Mode is set to
'TestGeneration'.

'EnableAll'

'DisableAll'

'UseLocalSettings' (default)

TestObjectives Specify whether Test Objective
blocks in your model are
enabled or disabled.

This parameter is enabled
when Mode is set to
'TestGeneration'.

'EnableAll'

'DisableAll'

'UseLocalSettings' (default)

1-58

 sldvoptions

Parameter Description Values

TestSuiteOptimization Specify the optimization
strategy to use when
generating test cases.

This parameter is enabled
when Mode is set to
'TestGeneration'.

'CombinedObjectives'

(default)
'IndividualObjectives'

'LargeModel'

'LongTestCases'

'CombinedObjectives

(Nonlinear Extended)'

'LargeModel (Nonlinear

Extended)'

Examples

Create an options object and set several parameters:

opts = sldvoptions;

opts.AutomaticStubbing = 'on';

opts.Mode = 'TestGeneration';

opts.ModelCoverageObjectives = 'MCDC';

opts.ReportIncludeGraphics = 'on';

opts.SaveHarnessModel = 'off';

opts.SaveReport = 'off';

opts.TestSuiteOptimization = 'LongTestCases';

Get the options object for the sldvdemo_cruise_control model:

sldvdemo_cruise_control

optsModel = sldvoptions(bdroot);

optsCopy = optsModel.deepCopy;

optsCopy.MaxProcessTime = 120;

Alternatives

In the Simulink Editor, select Analysis > Design Verifier > Options to set the
Simulink Design Verifier analysis options.

See Also
sldvblockreplacement | sldvcompat | sldvgencov | sldvrun

1-59

1 Functions — Alphabetical List

Introduced in R2007a

1-60

 sldv.prove

sldv.prove

Proof objective function for Stateflow charts and MATLAB Function blocks

Syntax

sldv.prove(expr)

Description

sldv.prove(expr) specifies that expr be true for every evaluation while proving
properties. Use any valid Boolean expression for expr.

This function has no output and no impact on its parenting function, other than any
indirect side effects of evaluating expr. If you issue this function from the MATLAB
command line, the function has no effect.

Intersperse sldv.prove proof assumptions within code or separate the assumptions into
a verification script.

Examples

Specify a property proof objective and proof assumption in a MATLAB Function block:

1 Open the sldvdemo_sbr_verification model and save it as
ex_sldvdemo_sbr_verification.

2 Open the Safety Properties subsystem.

1-61

1 Functions — Alphabetical List

3 Open the MATLAB Property block, which is a MATLAB Function block.

4 At the end of thecheck_reminder function definition, add the line
sldv.assume(Inputs.KEY==0 | 1); so that the last two lines of the function
definition now read:

1-62

 sldv.prove

sldv.prove(implies(activeCond, SeatBeltIcon));

sldv.assume(Inputs.KEY==0 | 1);

5 In the editor, save the updated code.
6 Prove the safety properties. With the model open in the Simulink Editor, select

the Safety Properties subsystem and choose Analysis > Design Verifier > Prove
Properties > Selected Subsystem.

In the Simulink Editor, you can also right-click the Safety Properties subsystem and
select Design Verifier > Prove Subsystem Properties.

Tutorials
• “Prove Properties in a Model”

Alternatives

Instead of using the sldv.prove function, you can insert a Proof Objective block in
your model.

However, using sldv.prove instead of a Proof Objective block offers several benefits,
described in “What Is Property Proving?”.

You can also specify a proof objective by using MATLAB for code generation without
using the sldv.prove function. Using sldv.prove instead of directly using MATLAB
for code generation eliminates the need to:

• Express the objective with a Simulink block
• Explicitly connect the proof output to a Simulink block

See Also
sldv.condition | sldv.prove | sldv.test | Proof Assumption | Proof
Objective | Test Condition | Test Objective

Topics
“Prove Properties in a Model”
“Workflow for Proving Model Properties”

1-63

1 Functions — Alphabetical List

Introduced in R2009b

1-64

 sldvreport

sldvreport
Generate report

Syntax

[status, reportFilePath] = sldvreport(sldvDataFile)

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...})

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath)

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath, showUI)

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath, showUI, FORMAT)

Description

[status, reportFilePath] = sldvreport(sldvDataFile) generates a complete
HTML report from the data in sldvDataFile. status returns true if sldvreport
created the report. reportFilePath contains the actual name of the HTML report
created.

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}) generates a complete HTML report from the data in
sldvDataFile based on the specified options. options is a cell array.

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath) generates a complete HTML report from
the data in sldvDataFile based on the specified options and saves it in the location
reportFilePath.

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath, showUI) generates a complete HTML
report from the data in sldvDataFile based on the specified options and saves it in the
location reportFilePath. Also displays the status of the report generation in a UI if
showUI is true.

1-65

1 Functions — Alphabetical List

[status, reportFilePath] = sldvreport(sldvDataFile, {reportOption1,

reportOption2, ...}, reportFilePath, showUI, FORMAT) generates a complete
report in the specified FORMAT from the data in sldvDataFile based on the specified
options and saves it in the location reportFilePath. Also displays the status of the
report generation in a UI if showUI is true.

Input Arguments

sldvDataFile

Name of the data file that contains the analysis results

options

Cell array that specifies options for the report:

'summary' Include summary analysis data only
(Default: false)

'objectives' Include test objective data (Default: true)
'object' Include data about all model objects

(Default: true)
'testcases' Include data about all generated test cases

(Default: true)
'properties' Include data about all properties proven or

falsified (Default: true)

reportFilePath

The path and file name for the generated report

showUI

Logical value indicating where to display messages during analysis
true to display messages in the log window
false (default) to display messages in the MATLAB command window

FORMAT

Entry indicating whether to generate the report in HTML format, PDF format, or in both
formats.

1-66

 sldvreport

'HTML' (default) to generate an HTML version of the report
'PDF' to generate a PDF version of the report
{'HTML', 'PDF'} to generate both an HTML version and a PDF version of the report

This parameter is case sensitive. Use only capital letters for this parameter.

Output Arguments

status

true if sldvreport creates the report, otherwise false.

reportFilePath

The path and file name for the generated HTML report

Examples

Analyze the model and create a PDF version of the report using sldvreport:
opts = sldvoptions; % Create options structure

opts.Mode = 'TestGeneration'; % Do test-gen analysis

opts.SaveReport = 'off'; % Don't save HTML report

open_system 'sldvdemo_cruise_control'; % Open the model

[status, files] = sldvrun('sldvdemo_cruise_control', opts); %Analyze model

[status, reportFilePath] = sldvreport(files.DataFile, ...

 opts, '', '', 'PDF'); % Create PDF version of the report

Alternatives

The Simulink Design Verifier software can create an HTML report after analyzing a
model. In the Configuration Parameters dialog box, in the Design Verifier > Report
pane, select Generate report of the results. If you want to save an additional PDF
version of the report, select Generate additional report in PDF format.

See Also
sldvrun

1-67

1 Functions — Alphabetical List

Introduced in R2009b

1-68

 sldvrun

sldvrun

Analyze model

Syntax

status = sldvrun

status = sldvrun(model)

status = sldvrun(subsystem)

status = sldvrun(model, options)

[status, filenames] = sldvrun(model, options)

[status, filenames] = sldvrun(model, options, showUI, startCov)

Description

status = sldvrun analyzes the current model to generate test cases that provide
model coverage or prove the model properties.

status = sldvrun(model) analyzes model to generate test cases that provide model
coverage or prove the model properties

status = sldvrun(subsystem) converts the atomic subsystem subsystem into a
new model and runs a design verification analysis on the new model.

status = sldvrun(model, options) analyzes model using the sldvoptions object
options.

[status, filenames] = sldvrun(model, options) analyzes model and returns
the file names the software created during the analysis.

[status, filenames] = sldvrun(model, options, showUI, startCov) opens
the log window during the analysis if you set showUI to true. If you set showUI to
false (the default), it directs output to the MATLAB command line.

1-69

1 Functions — Alphabetical List

Input Arguments

model

Handle to a Simulink model

Default: []

subsystem

Handle to an atomic subsystem in a Simulink model

Default: []

options

sldvoptions object specifying the analysis options

Default: []

showUI

Logical value indicating where to display messages during the analysis
true to display messages in the log window
false (default) to display messages in the MATLAB command window

startCov

cvdata object specifying model coverage objects for the software to ignore

Default: []

Output Arguments

filenames

A structure whose fields list the file names that the Simulink Design Verifier software
generates:

DataFile MAT-file with raw input data
HarnessModel Simulink harness model
Report HTML report with the results

1-70

 sldvrun

ExtractedModel Simulink model extracted from subsystem
BlockReplacementModel Simulink model obtained after block

replacements

status

-1 Analysis exceeded the maximum processing
time

 0 Error
 1 Preprocessing completed normally

Examples

Set sldvoptions parameters, open the sldvdemo_cruise_control model, and
analyze the model using the specified options:
opts = sldvoptions;

opts.Mode = 'TestGeneration'; % Perform test-generation analysis

opts.ModelCoverageObjectives = 'MCDC'; % MCDC coverage

opts.SaveHarnessModel = 'off'; % Don't save harness as model file

opts.SaveReport = 'on'; % Save the HTML report

open_system 'sldvdemo_cruise_control';

[status, files] = sldvrun('sldvdemo_cruise_control', opts);

Tutorials
• “Generate Test Cases for Model Decision Coverage”

• “Prove Properties in a Model”

Alternatives

In the Model Editor window, select Analysis > Design Verifier > Detect Design
Errors, Analysis > Design Verifier > Generate Tests, or Analysis > Design
Verifier > Prove Properties to run a Simulink Design Verifier analysis.

See Also
sldvcompat | sldvoptions | sldvgencov

1-71

1 Functions — Alphabetical List

Topics
“Generate Test Cases for Model Decision Coverage”
“Prove Properties in a Model”

Introduced in R2007a

1-72

 sldvruncgvtest

sldvruncgvtest

Invoke Code Generation Verification (CGV) API and execute model

Syntax

cgvObject = sldvruncgvtest(model, dataFile)

cgvObject = sldvruncgvtest(model, dataFile, runOpts)

Description

cgvObject = sldvruncgvtest(model, dataFile) invokes the Code Generation
Verification (CGV) API methods and executes the model using all test cases in
dataFile. cgvObject is a cgv.CGV object that sldvruncgvtest creates during the
execution of the model. sldvruncgvtest sets the execution mode for cgvObject
to'sim' by default.

cgvObject = sldvruncgvtest(model, dataFile, runOpts) invokes CGV API
methods and executes the model using test cases in dataFile. runOpts defines the
options for executing the test cases. The settings in runOpts determine the configuration
of cgvObject.

Input Arguments

model

Name or handle of the Simulink model to execute

dataFile

Name of the data file or a structure that contains the input data. Data can be generated
either by:

• Analyzing the model using the Simulink Design Verifier software.
• Using the sldvlogsignals function.

1-73

1 Functions — Alphabetical List

runOpts

A structure whose fields specify the configuration of sldvruncgvtest.

Field Name Description

testIdx Test case index array to execute from dataFile. If testIdx
is [], sldvruncgvtest executes all test cases in dataFile.

Default: []
allowCopyModel Specifies to create and configure the model if you have not

configured it to execute test cases with the CGV API.

If true and you have not configured model to execute test
cases with the CGV API, sldvruncgvtest copies the model,
fixes the configuration, and executes the test cases on the
copied model.

If false (the default), an error occurs if the tests cannot
execute with the CGV API.

Note: If you have not configured the top-level model or any
referenced models to execute test cases, sldvruncgvtest
does not copy the model, even if allowCopyModel is true. An
error occurs.

cgvCompType Defines the software-in-the-loop (SIL) or processor-in-the-loop
(PIL) approach for CGV:

• 'topmodel' (default)
• 'modelblock'

cgvConn Specifies mode of execution for CGV:

• 'sim' (default)
• 'sil'

• 'pil'

Note: runOpts = sldvruntestopts('cgv') returns a runOpts structure with the
default values for each field.

1-74

 sldvruncgvtest

Output Arguments

cgvObject

cgv.CGV object that sldvruncgvtest creates during the execution of model.

sldvruncgvtest saves the following data for each test case executed in an array of
Simulink.SimulationOutput objects inside cgvObject.

Field Description

tout_sldvruncgvtest Simulation time
xout_sldvruncgvtest State data
yout_sldvruncgvtest Output signal data
logsout_sldvruncgvtest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

on the model

Examples

Open the sldemo_mdlref_basic example model and log the input signals to the
CounterA Model block.
open_system('sldemo_mdlref_basic');

load_system('sldemo_mdlref_counter');

loggedData = sldvlogsignals('sldemo_mdlref_basic/CounterA');

Create the default configuration object for sldvruncgvtest, and allow the model to be
configured to execute test cases with the CGV API.
runOpts = sldvruntestopts('cgv');

runOpts.allowCopyModel = true;

Using the logged signals, execute sldvruncgvtest—first in simulation mode, and then
in Software-in-the-Loop (SIL) mode—to invoke the CGV API and execute the specified
test cases on the generated code for the model.
cgvObjectSim = sldvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

runOpts.cgvConn = 'sil';

1-75

1 Functions — Alphabetical List

cgvObjectSil = sldvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

Use the CGV API to compare the results of the first test case.
simout = cgvObjectSim.getOutputData(1);

silout = cgvObjectSil.getOutputData(1);

[matchNames, ~, mismatchNames, ~] = cgv.CGV.compare(simout, silout);

fprintf('\nTest Case: %d Signals match, %d Signals mismatch', ...

 length(matchNames), length(mismatchNames));

Tips

To run sldvruncgvtest, you must have a Embedded Coder® license.

If your model has parameters that are not configured for executing test cases with the
CGV API, sldvruncgvtest reports warnings about the invalid parameters. If you see
these warnings, do one of the following:

• Modify the invalid parameters and rerun sldvruncgvtest.
• Set allowCopyModel in runOpts to be true and rerun sldvruncgvtest.

sldvruncgvtest makes a copy of your model with the same configuration, and
invokes the CGV API.

See Also
cgv.CGV | sldvlogsignals | sldvrun | sldvruntest | sldvruntestopts

Introduced in R2010b

1-76

 sldvruntest

sldvruntest
Simulate model using input data

Syntax

outData = sldvruntest(model, dataFile)

outData = sldvruntest(model, dataFile, runOpts)

[outData, covData] = sldvruntest(model, dataFile, runOpts)

Description

outData = sldvruntest(model, dataFile) simulates model using all the test
cases in dataFile. outData is an array of Simulink.SimulationOutput class
(Simulink) objects. Each array element contains the simulation output data of the
corresponding test case.

outData = sldvruntest(model, dataFile, runOpts) simulates model using all
the test cases in dataFile. runOpts defines the options for simulating the test cases.

[outData, covData] = sldvruntest(model, dataFile, runOpts) simulates
model using the test cases in dataFile. When the runOpts field coverageEnabled
is true, the Simulink Verification and Validation™ software collects model coverage
information during the simulation. sldvruntest returns the coverage data in the
cvdata object covData.

Input Arguments

model

Name or handle of the Simulink model to simulate

dataFile

Name of the data file or structure that contains the input data. You can generate
dataFile using the Simulink Design Verifier software, or by running the
sldvlogsignals function.

1-77

1 Functions — Alphabetical List

runOpts

A structure whose fields specify the configuration of sldvruntest.

Field Description

testIdx Test case index array to simulate from
dataFile. If testIdx is [], sldvruntest
simulates all test cases.

Default: []
coverageEnabled If true, specifies that the Simulink

Verification and Validation software collect
model coverage data during simulation.

Default: false
coverageSetting cvtest object for collecting model coverage.

If [], sldvruntest uses the existing
coverage settings for model.

Default: []

Note: runOpts = sldvruntestopts returns a runOpts structure with the default
values for each field.

Output Arguments

outData

An array of Simulink.SimulationOutput objects that simulating the test cases
generates. Each Simulink.SimulationOutput object has the following fields.

Field Name Description

tout_sldvruntest Simulation time
xout_sldvruntest State data
yout_sldvruntest Output signal data

1-78

 sldvruntest

Field Name Description

logsout_sldvruntest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

on the model

covData

cvdata object that contains the model coverage data collected during simulation.

Examples

Analyze the sldvdemo_cruise_control model. Using data from the three test cases
in the test suite, simulate the model. Use the Simulation Data Inspector to examine the
signal logging data from the three test cases:

opts = sldvoptions;

opts.Mode = 'TestGeneration';

opts.SaveHarnessModel = 'on';

opts.SaveReport = 'off';

open_system('sldvdemo_cruise_control');

[status, files] = sldvrun('sldvdemo_cruise_control', opts);

runOpts = sldvruntestopts;

[outData] = sldvruntest('sldvdemo_cruise_control',...

 files.DataFile, runOpts);

Simulink.sdi.createRun('Test Case 1 Output', 'namevalue',...

 {'output'}, {outData(1).find('logsout_sldvruntest')});

Simulink.sdi.createRun('Test Case 2 Output', 'namevalue',...

 {'output'}, {outData(2).find('logsout_sldvruntest')});

Simulink.sdi.createRun('Test Case 3 Output', 'namevalue',...

 {'output'}, {outData(3).find('logsout_sldvruntest')});

Simulink.sdi.view;

Tips

The dataFile that you create with a Simulink Design Verifier analysis or by running
sldvlogsignals contains time values and data values. When you simulate a model
using these test cases, you might see missing coverage. This issue occurs when the

1-79

1 Functions — Alphabetical List

time values in the dataFile are not aligned with the current simulation time step due
to numeric calculation differences. You see this issue more frequently with multirate
models—models that have multiple sample times.

See Also
cvsim | cvtest | sim | sldvrun | sldvruntestopts

Introduced in R2007b

1-80

 sldvruntestopts

sldvruntestopts
Generate simulation or execution options for sldvruntest or sldvruncgvtest

Syntax

runOpts = sldvruntestopts

runOpts = sldvruntestopts('cgv')

Description

runOpts = sldvruntestopts generates a runOpts structure for sldvruntest.

runOpts = sldvruntestopts('cgv') generates a runOpts structure for
sldvruncgvtest.

Output Arguments

runOpts

A structure whose fields specify the configuration of sldvruntest or sldvruncgvtest.
runOpts can have the following fields. If you do not specify a field, sldvruncgvtest or
sldvruntest uses the default value.

Field Name Description

testIdx Test case index array to simulate or execute from
dataFile.

If testIdx = [], all test cases will be simulated or
executed.

outputFormat Specifies format of output values:

• 'TimeSeries' (default) —
sldvruntest/sldvruncgvtest stores the output
values in time-series format.

1-81

1 Functions — Alphabetical List

Field Name Description

• 'StructureWithTime' —
sldvruntest/sldvruncgvtest stores the output
values in the Structure with time format.

coverageEnabled Available only for sldvruntest.

If true, the Simulink Verification and Validation software
collects model coverage data during simulation.

Default: false
coverageSetting Available only for sldvruntest.

cvtest object to use for collecting model coverage.

If coverageSetting is [], sldvruntestopts returns
the coverage settings for the model specified in the call to
sldvruntest.

Default: []
allowCopyModel Available only for sldvruncgvtest.

Specifies to create and configure the model if you have not
configured it to execute test cases with the CGV API.

If true and you have not configured the model to execute
test cases with the CGV API, sldvruncgvtest copies the
model, fixes the configuration, and executes the test cases
on the copied model.

If false (the default), an error occurs if the tests cannot
execute with the CGV API.

Note: If you have not configured the top-level model or any
referenced models to execute test cases, sldvruncgvtest
does not copy the model, even if allowCopyModel is
true. An error occurs.

1-82

 sldvruntestopts

Field Name Description

cgvComType Available only for sldvruncgvtest.

Defines the software-in-the-loop (SIL) or processor-in-the-
loop (PIL) approach for CGV:

• 'topmodel' (default)
• 'modelblock'

cgvConn Available only for sldvruncgvtest.

Specifies mode of execution for CGV:

• 'sim' (default)
• 'sil'

• 'pil'

Examples

Create runOpts objects for sldvruntest and sldvruncgvtest:

runtest_options = sldvruntestopts; ! sldvruntest

runcgvtest_options = sldvruntestopts('cgv') ! sldvruncgvtest

Alternatives

Create a runOpts object for sldvruntest at the MATLAB command line.

See Also
sldvruncgvtest | sldvruntest

Introduced in R2010b

1-83

1 Functions — Alphabetical List

sldvsimdata

Get simulation data in Dataset format

Syntax

[simData,params] = sldvsimdata(dataFile)

[simData,params] = sldvsimdata(dataFile,index)

[simData,params] = sldvsimdata(data)

[simData,params] = sldvsimdata(data,index)

Description

[simData,params] = sldvsimdata(dataFile) returns
Simulink.SimulationData.Dataset object simData, containing simulation data,
and structure array params, containing parameter values, from Simulink Design
Verifier data file dataFile. The elements of simData and params correspond to each
test case or counterexample in dataFile.

[simData,params] = sldvsimdata(dataFile,index) returns
Simulink.SimulationData.Dataset object simData, containing simulation
data, and structure array params, containing parameter values, for the test case or
counterexample represented by integer index in Simulink Design Verifier data file
dataFile.

[simData,params] = sldvsimdata(data) returns
Simulink.SimulationData.Dataset object simData, containing simulation data,
and structure array params, containing parameter values, from Simulink Design
Verifier data variable data.

[simData,params] = sldvsimdata(data,index) returns
Simulink.SimulationData.Dataset object simData, containing simulation
data, and structure array params, containing parameter values, for the test case or
counterexample represented by integer index in the Simulink Design Verifier data
variable data.

1-84

 sldvsimdata

Input Arguments

dataFile — simulation data file
Simulink Design Verifier data file

Simulink Design Verifier data file. For more information, see “Simulink Design Verifier
Data Files”.
Example:

data — simulation data variable
Simulink Design Verifier data variable

Simulink Design Verifier data variable.
Example:

index — index of test case or counterexample in data file
integer

Index of test case or counterexample in data file, specified as an integer.
Example:

Output Arguments

simData — Dataset object containing simulation data
Simulation data, returned as Simulink.SimulationData.Dataset object.

params — model configuration parameters
structure array

Model parameters, returned as a structure array.

See Also

See Also
Simulink.SimulationData.Dataset | sldvlogsignals | sldvruntest

1-85

1 Functions — Alphabetical List

Introduced in R2014b

1-86

 sldv.test

sldv.test
Test objective function for Stateflow charts and MATLAB Function blocks

Syntax

sldv.test(expr)

Description

sldv.test(expr) Specifies that expr should be made true when generating tests. Use
any valid Boolean expression for expr.

This function has no output and no impact on its parenting function, other than any
indirect side effects of evaluating expr. If you issue this function from the MATLAB
command line, the function has no effect.

Intersperse sldv.test test objectives within code or separate the objectives into a
verification script.

The Test objectives option in the Test generation pane applies to test objectives
represented with the sldv.test function, as well as with the Test Objective block.

Examples

Add a test objective and test conditions:

1 Open the sldvdemo_cruise_control model and save it as
ex_sldvdemo_cruise_control.

2 Remove the Test Condition block for the speed block signal. Instead of the Test
Condition block, this example uses sldv.test and sldv.condition.

3 From the User-Defined Functions library, add a MATLAB Function block and:

a Name the block tests.
b Open the block and add the following code:

1-87

1 Functions — Alphabetical List

function define_tests(speed, target)

%#codegen

sldv.condition(speed >= 0 && speed <= 100);

sldv.test(speed > 60 && target > 40 && target < 50);

sldv.test(speed < 20 && target > 50);

c Save the code and close the editor.
d Connect the block to the signal for the speed block and to the signal for the

target block.

4 Generate the test: select Analysis > Design Verifier > Generate Tests > Model.

1-88

 sldv.test

Tutorials
• “Generate Test Cases for Model Decision Coverage”

Alternatives

Instead of using the sldv.test function, you can insert a Test Objective block in
your model.

However, using sldv.test instead of a Test Objective block offers several benefits,
described in “What Is Test Case Generation?”.

See Also
sldv.assume | sldv.condition | sldv.prove | Proof Assumption | Proof
Objective | Test Condition | Test Objective

Topics
“Generate Test Cases for Model Decision Coverage”
“Workflow for Test Case Generation”

Introduced in R2009b

1-89

1 Functions — Alphabetical List

sldvtimer

Identify, change, and display timer optimizations

Syntax

status = sldvtimer

status = sldvtimer(value)

status = sldvtimer(sldvdata)

status = sldvtimer(sldvdata,display)

status = sldvtimer(model)

Description

status = sldvtimer returns a status of 1 if timer optimizations are enabled for
Simulink Design Verifier test generation. Otherwise, sldvtimer returns a status of 0.

status = sldvtimer(value) enables or disables timer optimizations for Simulink
Design Verifier test generation.

status = sldvtimer(sldvdata) indicates if timer optimizations are recorded
in Simulink Design Verifier data file sldvdata. Returns a status of 1 if timer
optimizations are recorded in Simulink Design Verifier data file sldvdata. Returns a
status of 0 if timer optimizations are not recorded. Returns a status of -1 if sldvdata
does not have information about timer optimizations.

status = sldvtimer(sldvdata,display) indicates if timer optimizations are
recorded in Simulink Design Verifier data file sldvdata and identifies model items
that are part of recognized timer patterns when display is true. Returns a status of
1 if timer optimizations are recorded in Simulink Design Verifier data file sldvdata.
Returns a status of 0 if timer optimizations are not recorded. Returns a status of -1 if
sldvdata does not have information about timer optimizations.

status = sldvtimer(model) displays timer patterns in the model that can be
optimized for Simulink Design Verifier test generation.

1-90

 sldvtimer

Input Arguments

value

Logical value to enable timer optimizations
true to enable timer optimizations
false (default) to disable timer optimizations

sldvdata

Name of the data file that contains the timer optimization data.

display

Logical value to identify model objects that are part of recognized timer patterns
true to identify model objects that are part of recognized timer patterns
false (default) to not identify model objects that are part of recognized timer patterns

model

Handle to a Simulink model

Default: []

Examples

This example shows how to use the sldvtimer function to optimize model timers,
increasing the number of test generation objectives met during Simulink Design Verifier
Test Generation analysis.

1 The example model has timers timer_1 and timer_2 in a Stateflow chart.

1-91

1 Functions — Alphabetical List

2 Select Analysis > Design Verifier > Generate Tests > Model.

• The Simulink Design Verifier log dialog box reports:

• Test generation exceeded time limit

• 28 of 32 objectives satisfied

• The Simulink Design Verifier Errors information dialog box indicates that Test
generation did not optimize timer patterns.

1-92

 sldvtimer

3 In the MATLAB Command Window, enter:

sldvtimer(1)

4 Select Analysis > Design Verifier > Generate Tests > Model to generate test
cases again.

Limitations

If relational boundary objectives are included for test case generation, sldvtimer can
optimize fewer timers. For information on relational boundary objectives, see “Relational
Boundary”.

See Also
sldvruncgvtest | sldvruntest | sldvruntestopts

Introduced in R2012a

1-93

1 Functions — Alphabetical List

slslicer
Create an API object for invoking Model Slicer

Syntax
slslicer(model)

slslicer(model,opts)

slslicer(obj,method)

Description
slslicer(model) creates an API object for the model model exposing the methods for
invoking Model Slicer. Uses the Model Slicer configurations associated with model, as
defined by slsliceroptions.

slslicer(model,opts) Creates an API object model model using the options object
opts as defined by slsliceroptions.

slslicer(obj,method) Enacts the action method on the Model Slicer object obj.

Input Arguments

model — Name or handle of model
character vector

Name of the model whose Model Slicer options object you configure.

opts — Options you attach to a model or save to a file
structure

Structure containing the options for the Model Slicer configuration.

Output Arguments

obj — Model Slicer object
Method

1-94

 slslicer

The following table describes the methods you use on a Model Slicer object.

Parameter Description

activate Activates the model for analysis
unlock Disposes the analysis data while retaining

model highlights
terminate Disposes the analysis data and reverts the

model highlighting (invoked when the object
goes out of scope)

highlight Updates the model highlighting
unhighlight Removes the model highlighting without

changing the activation status
slice Creates a new sliced model from the model

highlight
simulate(t1,t2) Simulates a test case for dynamic slicing from

time "t1" to time "t2"
ActiveBlocks Returns the active non-virtual block handles

See Also

See Also
slsliceroptions | slslicertrace

Topics
“Workflow for Dependency Analysis”
“Configure Model Highlight and Sliced Models”
“Model Slicer Considerations and Limitations”

Introduced in R2015b

1-95

1 Functions — Alphabetical List

slsliceroptions
Create an options object for configuring Model Slicer

Syntax

slsliceroptions

slsliceroptions(model)

slsliceroptions(file)

slsliceroptions(model,opts)

slsliceroptions(file,opts)

Description

slsliceroptions creates an options object for configuring Model Slicer.

slsliceroptions(model) creates a copy of the Model Slicer options object associated
with the model model.

slsliceroptions(file) creates a copy of the Model Slicer options object contained in
the file file.

slsliceroptions(model,opts) attaches the slicer options opts to the model model,
overwriting the existing options.

slsliceroptions(file,opts) attaches the slicer options opts to the file file,
overwriting the existing options.

Examples

Add Starting Points and Exclusion Points to Active Configuration

Add a new starting point and a new exclusion point to the active Model Slicer
configuration.

Open the f14 example model.

open_system('f14')

1-96

 slsliceroptions

Define the options file opts for the model.

opts = slsliceroptions('f14')

Add a new starting point on the Gain block.

addStartingPoint(opts,'f14/Gain')

Add a new exclusion point on the alpha (rad) block.

addExclusionPoint(opts,'f14/alpha (rad)')

Add Starting Points and Exclusion Points to New Configuration

Add a starting point and an exclusion point to the a new Model Slicer configuration
without overwriting the original configuration.

Open the f14 example model.

open_system('f14')

Define the options file opts for the model.

opts = slsliceroptions('f14')

Create a second Model Slicer options configuration for the model.

addConfiguration(opts)

Add a new starting point on the Gain block for the second Model Slicer options
configuration.

addStartingPoint(opts.Configuration(2),'f14/Gain')

Add a new exclusion point on the alpha (rad) block for the second Model Slicer options
configuration.

addExclusionPoint(opts.Configuration(2),'f14/alpha (rad)')

Input Arguments

model — Name or handle of model
character vector

1-97

1 Functions — Alphabetical List

Name of the model whose Model Slicer options object you configure.

file — Name of file
character vector

Name of the file containing the Model Slicer options object you configure.

opts — Options you attach to a model or save to a file
structure

Structure containing the options for the Model Slicer configuration.

See Also

See Also
slslicer | slslicertrace

Topics
“Workflow for Dependency Analysis”
“Configure Model Highlight and Sliced Models”
“Model Slicer Considerations and Limitations”

Introduced in R2015b

1-98

 slslicertrace

slslicertrace
Return the block handles in the sliced model or source model after using Model Slicer

Syntax

slslicertrace

slslicertrace('slice',object)

slslicertrace('source',object)

Description

slslicertrace returns the block handles in the sliced model or source model.

slslicertrace('slice',object) returns the block handles in the sliced model
which correspond to blocks specified by object in the source model. object can be an
array of block handles, cell arrays of block paths, or cell arrays of Simulink Identifiers
(SID).

slslicertrace('source',object) returns the block handles in the source model
that correspond to blocks specified by object in the sliced model. object can be an
array of block handles, cell arrays of block paths, or cell arrays of Simulink Identifiers
(SID).

Input Arguments

'slice' — Name of sliced model
character vector

Name of the sliced model.

'source' — Name of source model
character vector

Name of the source model.
Example: 'sldvdemo_cruise_control'

1-99

1 Functions — Alphabetical List

Example: 'sldvdemo_flipflop'

object — Object in source model or sliced model
numeric handle

An object in the source model or sliced model.

See Also

See Also
slslicer | slsliceroptions

Topics
“Workflow for Dependency Analysis”
“Configure Model Highlight and Sliced Models”
“Model Slicer Considerations and Limitations”

Introduced in R2015b

1-100

2

Blocks — Alphabetical List

2 Blocks — Alphabetical List

Detector
Detect true duration on input and construct output true duration based on output type

Library

Simulink Design Verifier

Temporal Operators Terminology
• True duration of a signal — Consecutive time steps during which a signal is true
• Length of the true duration of the signal — The number of time steps that constitute

the true duration
• Input detection phase — The phase that is complete at the final time step of the

expected length of the input true duration
• Output construction phase— The phase when the block constructs a true duration at

the output based on the output type of the block
• Delay duration — The number of time steps of delay after input detection, after which

the output signal is true

Description

The inputs and outputs of the Detector block are of Boolean type.

On input detection, the Detector block constructs an output signal based on one of the
two output types that you specify:

• Delayed Fixed Duration—After the input detection is complete and after an
optional delay, the output signal becomes true for a fixed number of time steps. The
true duration of the output is independent of the input.

2-2

 Detector

• Synchronized—In the final time step of the input detection, the output becomes
true and stays true as long as the input signal continues to be true. The true
duration of the output varies and is synchronized with the true duration of the input.

Parameters

External reset
Specify whether the block can be reset to the start of the input detection by an
external Boolean reset signal.

Output type
Select Delayed Fixed Duration (the default) to specify a fixed true duration
length for the output after an optional delay. Select Synchronized to synchronize
the output true duration with that of the input.

Time steps for input detection
Length of the true duration for input detection (minimum is 1).

Time steps for delay (optional)
For Delayed Fixed Duration, optionally specify the length of the delay duration,
after which the output becomes true.

Time steps for output duration
For Delayed Fixed Duration, specify the length of the output true duration
(minimum is 1).

Examples

In the following examples, use a sample time of 1 second.

Delayed Fixed Duration

In this example, with Output type set to Delayed Fixed Duration, the input
detection phase does not continue during the output signal construction. The following
block parameters for the Detector block are set as follows:

• Time steps for input detection = 2

2-3

2 Blocks — Alphabetical List

• Time steps for delay (optional) = 1
• Time steps for output duration = 2

Scope 1 shows a scenario where the second true duration is not detected, because some
of the true time steps occur during output construction.

However, the second true duration in Scope 2 is detected because the remaining true
duration after the output construction satisfies the number of steps required for input
detection.

Synchronized

In this example, with the Output type set to Synchronized and Time steps for input
detection set to 2, the output becomes true in the final step of input detection. The
output continues to be true as long as the input signal is true.

Scope 1 shows that the output becomes true in the second time step, which is the final
time step of the input detection phase. When the number of time steps for input detection
is set to 1, the output is identical to the input, as you can see in Scope 2.

2-4

 Detector

See Also

Extender, Within Implies

Introduced in R2011a

2-5

2 Blocks — Alphabetical List

Extender
Extend true duration of input

Library

Simulink Design Verifier

Temporal Operators Terminology

• True duration of a signal — Consecutive time steps during which a signal is true

Description

The Extender block extends the true duration of the input signal by a fixed number of
steps (finite extension mode) or indefinitely.

The inputs and outputs of the Extender block are of Boolean type.

Parameters

Extension Period
Select Finite (the default) to specify a fixed number of time steps for extension.
Select Infinite to specify indefinite extension.

Time steps for extension
For finite extension, specify the number of time steps for extending the true duration
(minimum is 1).

External reset

2-6

 Extender

Specify whether an external Boolean reset signal can reset the block extension. The
reset signal also resets the infinite extension. The infinite extension with an external
reset is an indefinite extension until the external reset signal becomes true.

Examples

In the following example, do the following:

• Set the model sample time to 1 second.
• For the Extender block:

• Set the Extension Period parameter to Finite.
• Set the Time steps for extension parameter to 2

If the input signal becomes true during the extension period, the output continues to be
true and is extended after the last input true duration is complete. You can see this in
the following scope.

See Also

Detector, Within Implies

Introduced in R2011a

2-7

2 Blocks — Alphabetical List

Implies
Specify condition that produces a certain response

Library

Simulink Design Verifier

Description

The Implies block lets you specify a condition to produce a given response; for example,
when you press the brake pedal on a car, the cruise control mechanism becomes disabled.
If input A is true and input B is false, the output is false; for all other pairs of inputs, the
output is true.

You can use the Implies block in any model, not just when you run the Simulink Design
Verifier software.

Introduced in R2009a

2-8

 Proof Assumption

Proof Assumption
Constrain signal values when proving model properties

Library

Simulink Design Verifier

Description

When operating in property-proving mode, the Simulink Design Verifier software proves
that properties of your model satisfy specified criteria (see “What Is Property Proving?”).
In this mode, you can use Proof Assumption blocks to define assumptions for signals in
your model. The Values parameter lets you specify constraints on signal values during
a property proof. The block applies the specified Values parameter to its input signal,
and the Simulink Design Verifier software proves or disproves that the properties of your
model satisfy the specified criteria.

The block's parameter dialog box also allows you to:

• Enable or disable the assumption.
• Specify that the block should display its Values parameter in the Simulink Editor.
• Specify that the block should display its output port.

Note: The Simulink and Simulink Coder™ software ignore the Proof Assumption block
during model simulation and code generation, respectively. The Simulink Design Verifier
software uses the Proof Assumption block only when proving model properties.

Specifying Proof Assumptions

Use the Values parameter to constrain signal values in property proofs. Specify
any combination of scalars and intervals in the form of a MATLAB cell array.

2-9

2 Blocks — Alphabetical List

(For information about cell arrays, see “Cell Arrays” (MATLAB) in the MATLAB
documentation.)

Tip: If the Values parameter specifies only one scalar value, you do not need to enter it
in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array, where each
element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point constructor,
which accepts a single value as its argument. You can specify intervals using the
Sldv.Interval constructor, which requires two input arguments, i.e., a lower bound
and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.
• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note: By default, Sldv.Interval considers an interval to be closed if you omit its third
input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

• 0 — a scalar
• [1, 3] — a closed interval

2-10

 Proof Assumption

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)
• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Assumption block, the Simulink
Design Verifier software combines them using a logical OR operation during the property
proof. In this case, the software considers the entire assumption to be satisfied if any
single scalar or interval is satisfied.

Data Type Support

The Proof Assumption block accepts signals of all built-in data types supported by
the Simulink software. For a discussion on the data types supported by the Simulink
software, see “Data Types Supported by Simulink” (Simulink).

Parameters
Enable

Specify whether the block is enabled. If selected (the default), the Simulink Design
Verifier software uses the block when proving properties of a model. Clearing this
option disables the block, that is, causes the Simulink Design Verifier software to
behave as if the Proof Assumption block did not exist. If this option is not selected,
the block appears grayed out in the Simulink Editor.

Type
Specify whether the block behaves as a Proof Assumption or Test Condition block.
Select Test Condition to transform the Proof Assumption block into a Test
Condition block.

Values
Specify the proof assumption (see “Specifying Proof Assumptions” on page 2-9).

Display values
Specify whether the block displays the contents of its Values parameter in the
Simulink Editor. By default, this option is selected.

2-11

2 Blocks — Alphabetical List

Pass through style (show Outport)
Specify whether the block displays an output port in the Simulink Editor. If selected
(the default), the block displays its output port, allowing its input signal to pass
through as the block output. If not selected, the block hides its output port and
terminates the input signal. The following graphics illustrate the appearance of the
block in each case.

Pass through style (show Outport): Selected

Pass through style (show Outport): Deselected

See Also

Proof Objective, Test Condition

Introduced in R2007a

2-12

 Proof Objective

Proof Objective

Define objectives that signals must satisfy when proving model properties

Library

Simulink Design Verifier

Description

When operating in property-proving mode, the Simulink Design Verifier software proves
that properties of your model satisfy specified criteria (see “What Is Property Proving?”).
In this mode, you can use Proof Objective blocks to define proof objectives for signals in
your model.

The Values parameter lets you specify acceptable values for the block's input signal.
If a signal value deviates from the acceptable values in any time step, a property
violation occurs and the proof objective is falsified. The block applies the specified Values
parameter to its input signal, and the Simulink Design Verifier software proves or
disproves that the properties of your model satisfy the specified criteria.

The block's parameter dialog box allows you to

• Enable or disable the objective.
• Specify that the block should display its Values parameter in the Simulink Editor.
• Specify that the block should display its output port.

Note: The Simulink and Simulink Coder software ignore the Proof Objective block
during model simulation and code generation, respectively. The Simulink Design Verifier
software uses the Proof Objective block only when proving model properties.

2-13

2 Blocks — Alphabetical List

Specifying Proof Objectives

Use the Values parameter to define values that a signal must achieve during a proof
simulation. Specify any combination of scalars and intervals in the form of a MATLAB
cell array. (For information about cell arrays, see “Cell Arrays” (MATLAB) in the
MATLAB documentation.)

Tip: If the Values parameter specifies only one scalar value, you do not need to enter it
in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array, where each
element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point constructor,
which accepts a single value as its argument. You can specify intervals using the
Sldv.Interval constructor, which requires two input arguments, i.e., a lower bound
and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.
• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note: By default, Sldv.Interval considers an interval to be closed if you omit its third
input argument.

As an example, the Values parameter

{0, [1, 3]}

2-14

 Proof Objective

specifies:

• 0 — a scalar
• [1, 3] — a closed interval

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)
• Sldv.Point(1) — a scalar

If you specify multiple scalars and intervals for a Proof Objective block, the Simulink
Design Verifier software combines them using a logical OR operation during the property
proof. In this case, the software considers the entire proof objective to be satisfied if any
single scalar or interval is satisfied.

Data Type Support

The Proof Objective block accepts signals of all built-in data types supported by the
Simulink software. For a discussion on the data types supported by the Simulink
software, see “Data Types Supported by Simulink” (Simulink).

Parameters
Enable

Specify whether the block is enabled. If selected (the default), the Simulink Design
Verifier software uses the block when proving properties of a model. Clearing this
option disables the block, that is, causes the Simulink Design Verifier software to
behave as if the Proof Objective block did not exist. If this option is not selected, the
block appears grayed out in the Simulink Editor.

Values
Specify the proof objective (see “Specifying Proof Objectives” on page 2-14).

Display values
Specify whether the block displays the contents of its Values parameter in the
Simulink Editor. By default, this option is selected.

2-15

2 Blocks — Alphabetical List

Pass through style
Specify whether the block displays an output port in the Simulink Editor. If selected
(the default), the block displays its output port, allowing its input signal to pass
through as the block output. If not selected, the block hides its output port and
terminates the input signal. The following graphics illustrate the appearance of the
block in each case.

Pass through style: Selected

Pass through style: Deselected

Stop simulation when the property is violated
Specify whether to stop the simulation if the simulation encounters a signal that
violates the property specified in the Values parameter.

If you select this parameter and simulate the model, the simulation stops if it
encounters a violation of the specified property.

See Also

Proof Assumption, Test Objective

2-16

 Proof Objective

Introduced in R2007a

2-17

2 Blocks — Alphabetical List

Test Condition
Constrain signal values in test cases

Library

Simulink Design Verifier

Description

When operating in test generation mode, the Simulink Design Verifier software produces
test cases that satisfy the specified criteria (see “What Is Test Case Generation?”). In
this mode, you can use Test Condition blocks to define test conditions for signals in your
model. The Values parameter lets you specify constraints on signal values during a test
case simulation. The block applies the specified Values parameter to its input signal,
and the Simulink Design Verifier software attempts to produce test cases that satisfy the
condition.

The block's parameter dialog box also allows you to

• Enable or disable the condition.
• Specify that the block should display its Values parameter in the Simulink Editor.
• Specify that the block should display its output port.

Note: The Simulink and Simulink Coder software ignore the Test Condition block during
model simulation and code generation, respectively. The Simulink Design Verifier
software uses the Test Condition block only when generating test cases for a model.

Specifying Test Conditions

Use the Values parameter to constrain signal values in test cases. Specify any
combination of scalars and intervals in the form of a MATLAB cell array. (For

2-18

 Test Condition

information about cell arrays, see “Cell Arrays” (MATLAB) in the MATLAB
documentation.)

Tip: If the Values parameter specifies only one scalar value, you do not need to enter it
in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array, where each
element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point constructor,
which accepts a single value as its argument. You can specify intervals using the
Sldv.Interval constructor, which requires two input arguments, i.e., a lower bound
and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.
• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note: By default, Sldv.Interval considers an interval to be closed if you omit its third
input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

• 0 — a scalar
• [1, 3] — a closed interval

2-19

2 Blocks — Alphabetical List

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)
• Sldv.Point(1) — a scalar

Logical Behavior of Specifications

If you specify multiple scalars and intervals for a Test Condition block, the Simulink
Design Verifier software combines them using a logical OR operation when generating
test cases. Consequently, the software considers the entire test condition to be satisfied if
any single scalar or interval is satisfied.

Within a single scalar or interval, a test condition is generated with a logical AND
operation. In this case, all signals must satisfy the constraints in order for the input to
satisfy the condition.

For example, consider a two-dimensional open interval:

Sldv.Interval([-5 -5],[5 2],'()')

The zero vector [0 0] satisfies the condition because the zero elements are within the
intervals -5 to 5 and -5 to 2.

The vector [0 3] does not satisfy the condition because the second element 3 falls
outside the interval -5 to 2.

Data Type Support

The Test Condition block accepts signals of all built-in data types supported by the
Simulink software. For a discussion on the data types supported by the Simulink
software, see “Data Types Supported by Simulink” (Simulink).

Parameters

Enable

2-20

 Test Condition

Specify whether the block is enabled. If selected (the default), Simulink Design
Verifier software uses the block when generating tests for a model. Clearing this
option disables the block, that is, causes the Simulink Design Verifier software to
behave as if the Test Condition block did not exist. If this option is not selected, the
block appears grayed out in the Simulink Editor.

Type
Specify whether the block behaves as a Test Condition or Proof Assumption block.
Select Assumption to transform the Test Condition block into a Proof Assumption
block.

Values
Specify the test condition (see “Specifying Test Conditions” on page 2-18).

Display values
Specify whether the block displays the contents of its Values parameter in the
Simulink Editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the Simulink Editor. If selected
(the default), the block displays its output port, allowing its input signal to pass
through as the block output. If not selected, the block hides its output port and
terminates the input signal. The following graphics illustrate the appearance of the
block in each case.

Pass through style: Selected

Pass through style: Deselected

2-21

2 Blocks — Alphabetical List

See Also

Proof Assumption, Test Objective

Introduced in R2007a

2-22

 Test Objective

Test Objective
Define custom objectives that signals must satisfy in test cases

Library

Simulink Design Verifier

Description

When operating in test generation mode, the Simulink Design Verifier software produces
test cases that satisfy the specified criteria (see “What Is Test Case Generation?”). In
this mode, you can use Test Objective blocks to define custom test objectives for signals
in your model. The Values parameter lets you specify values that a signal must achieve
for at least one time step during a test case simulation. The block applies the specified
Values parameter to its input signal, and the Simulink Design Verifier software
attempts to produce test cases that satisfy the objective.

The block's parameter dialog box also allows you to

• Enable or disable the objective.
• Specify that the block should display its Values parameter in the Simulink editor.
• Specify that the block should display its output port.

Note: The Simulink and Simulink Coder software ignore the Test Objective block during
model simulation and code generation, respectively. The Simulink Design Verifier
software uses the Test Objective block only when generating test cases for a model.

Specifying Test Objectives

Use the Values parameter to define custom objectives that signals must satisfy in test
cases. Specify any combination of scalars and intervals in the form of a MATLAB cell

2-23

2 Blocks — Alphabetical List

array. (For information about cell arrays, see “Cell Arrays” (MATLAB) in the MATLAB
documentation.)

Tip: If the Values parameter specifies only one scalar value, you do not need to enter it
in the form of a MATLAB cell array.

Scalar values each comprise a single cell in the array, for example:

{0, 5}

A closed interval comprises a two-element vector as a cell in the array, where each
element specifies an interval endpoint:

{[1, 2]}

Alternatively, you can specify scalar values using the Sldv.Point constructor,
which accepts a single value as its argument. You can specify intervals using the
Sldv.Interval constructor, which requires two input arguments, i.e., a lower bound
and an upper bound for the interval. Optionally, you can provide one of the following
values as a third input argument that specifies inclusion or exclusion of the interval
endpoints:

• '()' — Defines an open interval.
• '[]' — Defines a closed interval.
• '(]' — Defines a left-open interval.
• '[)' — Defines a right-open interval.

Note: By default, Sldv.Interval considers an interval to be closed if you omit its third
input argument.

As an example, the Values parameter

{0, [1, 3]}

specifies:

• 0 — a scalar
• [1, 3] — a closed interval

2-24

 Test Objective

The Values parameter

{Sldv.Interval(0, 1, '[)'), Sldv.Point(1)}

specifies:

• Sldv.Interval(0, 1, '[)') — the right-open interval [0, 1)
• Sldv.Point(1) — a scalar

Logical Behavior of Specifications

If you specify multiple scalars and intervals for a Test Objective block, the Simulink
Design Verifier software combines them using a logical OR operation when generating
test cases. Consequently, the software considers the entire test objective to be satisfied if
any single scalar or interval is satisfied.

Within a single scalar or interval, a test objective is generated with a logical AND
operation. In this case, all signals must satisfy the constraints in order for the input to
satisfy the objective.

For example, consider a two-dimensional open interval:

Sldv.Interval([-5 -5],[5 2],'()')

The zero vector [0 0] satisfies the objective because the zero elements are within the
intervals -5 to 5 and -5 to 2.

The vector [0 3] does not satisfy the objective because the second element 3 falls outside
the interval -5 to 2.

Data Type Support

The Test Objective block accepts signals of all built-in data types supported by the
Simulink software. For a discussion on the data types supported by the Simulink
software, see “Data Types Supported by Simulink” (Simulink).

Parameters

Enable

2-25

2 Blocks — Alphabetical List

Specify whether the block is enabled. If selected (the default), the Simulink Design
Verifier software uses the block when generating tests for a model. Clearing this
option disables the block, that is, causes the Simulink Design Verifier software to
behave as if the Test Objective block did not exist. If this option is not selected, the
block appears grayed out in the Simulink Editor.

Values
Specify the test objective (see “Specifying Test Objectives” on page 2-23).

Display values
Specify whether the block displays the contents of its Values parameter in the
Simulink editor. By default, this option is selected.

Pass through style
Specify whether the block displays an output port in the Simulink editor. If selected
(the default), the block displays its output port, allowing its input signal to pass
through as the block output. If not selected, the block hides its output port and
terminates the input signal. The following figure illustrates the appearance of the
block in each case.

Pass through style: Selected

Pass through style: Deselected

2-26

 Test Objective

See Also

Proof Objective, Test Condition

Introduced in R2007a

2-27

2 Blocks — Alphabetical List

Verification Subsystem

Specify proof or test objectives without impacting simulation results or generated code

Library

Simulink Design Verifier

Description

This block is a Subsystem block that is preconfigured to serve as a starting point for
creating a subsystem that specifies proof or test objectives for use with the Simulink
Design Verifier software.

The Simulink Coder software ignores Verification Subsystem blocks during code
generation, behaving as if the subsystems do not exist. A Verification Subsystem block
allows you to add Simulink Design Verifier components to a model without affecting its
generated code.

Note: If a Verification Subsystem block contains blocks that depend on absolute time,
and you select an ERT-based target (Simulink Coder) for code generation, set the
software environment to absolute time. Open the Configuration Parameters dialog box.
In the Code Generation > Interface pane under Software environment, select
absolute time. Do not select continuous time. For more information on this setting,
see “Support: absolute time” (Simulink Coder) in the Simulink Coder documentation.

When collecting model coverage, the Simulink Verification and Validation software only
records coverage for Simulink Design Verifier blocks in the Verification Subsystem block;
it does not record coverage for any other blocks in the Verification Subsystem.

To create a Verification Subsystem in your model:

2-28

 Verification Subsystem

1 Copy the Verification Subsystem block from the Simulink Design Verifier library
into your model.

2 Open the Verification Subsystem block by double-clicking it.
3 In the Verification Subsystem window, add blocks that specify proof or test

objectives. Use Inport blocks to represent input from outside the subsystem.

The Verification Subsystem block in the Simulink Design Verifier library is
preconfigured to work with the Simulink Design Verifier software. A Verification
Subsystem block must:

• Contain no Outport blocks.
• Enable its Treat as Atomic Unit parameter.
• Specify its Mask type parameter as VerificationSubsystem.

If you alter the Verification Subsystem block so that the preceding conditions are not
met, the Simulink Design Verifier software displays a warning.

Examples

The sldvdemo_debounce_validprop example model includes a Verification Subsystem
called Verify Output, as shown in the image below.

The Verify Output subsystem specifies two proof objectives, detailed in the following
image.

2-29

2 Blocks — Alphabetical List

See Also
• Implies

• Within Implies

• Proof Assumption

2-30

 Verification Subsystem

• Proof Objective

• Test Condition

• Test Objective

• Subsystem block in the Simulink documentation
• “Create a Subsystem” (Simulink) in the Simulink documentation

Introduced in R2007b

2-31

2 Blocks — Alphabetical List

Within Implies
Verify response occurs within desired duration

Library

Simulink Design Verifier

Temporal Operators Terminology
• True duration of a signal — Consecutive time steps during which a signal is true

Description

The Within Implies block captures the within implication by observing whether the
Obs input is true for at least one step within each true duration of the first input
In. Whenever Obs is not detected within a particular input true duration, the output
becomes false for one time step in the step that follows the input true duration.

Parameters

The Within Implies block has only one user-specified parameter:

External reset
Specify whether the block observation of Obs can be reset by an external Boolean
reset signal.

Examples

In the following example, consider a sample time of 1 second.

2-32

 Within Implies

Obs is not observed within the first true duration of In, so Out becomes false for one
time step. Obs is observed within the second true duration of In, so Out is true. When
there is no true duration of In, Out remains true.

If Obs occurs multiple times, it does not affect the output.

See Also

Detector, Extender

Introduced in R2011a

2-33

3

Model Advisor Checks

3 Model Advisor Checks

Simulink Design Verifier Checks

In this section...

“Simulink Design Verifier Checks Overview” on page 3-2
“Check compatibility with Simulink Design Verifier” on page 3-2
“Detect dead logic with Simulink Design Verifier” on page 3-3
“Detect integer overflow with Simulink Design Verifier” on page 3-5
“Detect division by zero with Simulink Design Verifier” on page 3-6
“Detect out of bound array access with Simulink Design Verifier” on page 3-7
“Detect violation of minimum and maximum values with Simulink Design Verifier” on
page 3-8

Simulink Design Verifier Checks Overview

These checks help you prepare your model for Simulink Design Verifier analysis. When
you run a Simulink Design Verifier check, the Model Advisor checks out the Simulink
Design Verifier license.

For more information on the Model Advisor, see “Run Model Checks” (Simulink) and
“Automate Model Advisor Check Execution” (Simulink Verification and Validation).

Check compatibility with Simulink Design Verifier

Identify elements that Simulink Design Verifier analysis does not support.

Description

This check assesses your model for compatibility with Simulink Design Verifier.

Results and Recommended Actions

Condition Recommended Action

Incompatible Avoid using the following unsupported
software features or Simulink blocks in the
model or model component that you want
to analyze:

3-2

 Simulink Design Verifier Checks

Condition Recommended Action

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

• “Support Limitations for Model Blocks”
• “Support Limitations for Simulink

Software Features”
• “Support Limitations for Stateflow

Software Features”
• “Support Limitations for MATLAB for

Code Generation”
Partially compatible • Use automatic stubbing to ignore the

behavior of unsupported blocks during
analysis. See “Handle Incompatibilities
with Automatic Stubbing”.

• Analyze components of your model
separately. See “Extract Subsystems for
Analysis” and “Bottom-Up Approach to
Model Analysis”.

• If you have a complex model with
a large verification state space, see
“Sources of Model Complexity” for tips
on performing Simulink Design Verifier
analysis.

Compatible Simulink Design Verifier can analyze your
model.

See Also

• “Run Model Checks” (Simulink)
• “Check Model Compatibility”
• “Handle Incompatibilities with Automatic Stubbing”

Detect dead logic with Simulink Design Verifier

Identify logic that stays inactive during simulation.

3-3

3 Model Advisor Checks

Description

This check identifies portions of your model that stay inactive during simulation.

You can run a more detailed analysis that identifies both dead logic and active logic
using Simulink Design Verifier design error detection. For more information, see “Detect
Dead Logic Caused by an Incorrect Value”.

Results and Recommended Actions

Result Recommended Action

Failed, model incompatible Resolve the model incompatibility. See

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

• “Support Limitations for Model Blocks”
• “Support Limitations for Simulink

Software Features”
• “Support Limitations for Stateflow

Software Features”
• “Support Limitations for MATLAB for

Code Generation”

Also see
“Handle Incompatibilities with Automatic
Stubbing”.

Dead logic found in model Simulink Design Verifier proved that these
decision and condition outcomes cannot
occur and are dead logic in the model. Dead
logic can also be a side effect of specified
constraints on parameters or specified
minimum and maximum constraints on
input ports. In rare cases, dead logic can
result from approximations performed by
Simulink Design Verifier. It is possible that
there are objectives that this analysis did
not decide. To extend the results of this
analysis, use Simulink Design Verifier
design error detection to also identify active

3-4

 Simulink Design Verifier Checks

Result Recommended Action

logic. From the Simulink Editor, select
Analysis > Design Verifier > Options.
In the Design Error Detection pane,
select both Dead logic and Identify
active logic.

Dead logic not found in model Simulink Design Verifier did not find
dead logic in the model. It is possible that
there are objectives that this analysis did
not decide. To extend the results of this
analysis, use Simulink Design Verifier
design error detection to also identify active
logic. From the Simulink Editor, select
Analysis > Design Verifier > Options.
In the Design Error Detection pane,
select both Dead logic and Identify
active logic.

See Also

• “Run Model Checks” (Simulink)
• “Detect Dead Logic Caused by an Incorrect Value”
• “Design Verifier Pane: Design Error Detection”

Detect integer overflow with Simulink Design Verifier

Detects integer or fixed-point data overflow errors in your model

Description

This check identifies operations that exceed the data type range for integer or fixed-point
operations.

Results and Recommended Actions

Result Recommended Action

Failed, model incompatible Resolve the model incompatibility. See

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

3-5

3 Model Advisor Checks

Result Recommended Action

• “Support Limitations for Model Blocks”
• “Support Limitations for Simulink

Software Features”
• “Support Limitations for Stateflow

Software Features”
• “Support Limitations for MATLAB for

Code Generation”

Also see
“Handle Incompatibilities with Automatic
Stubbing”.

Integer overflow found in model To view the conditions that cause the
integer overflow, create a harness model.
When you simulate the harness, the inputs
replicate the error. Click View test case in
the Model Advisor report.

See Also

“Design Error Detection”

Detect division by zero with Simulink Design Verifier

Detects division-by-zero errors in your model

Description

This check identifies operations in your model that cause division-by-zero errors.

Results and Recommended Actions

Result Recommended Action

Failed, model incompatible Resolve the model incompatibility. See

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

• “Support Limitations for Model Blocks”

3-6

 Simulink Design Verifier Checks

Result Recommended Action

• “Support Limitations for Simulink
Software Features”

• “Support Limitations for Stateflow
Software Features”

• “Support Limitations for MATLAB for
Code Generation”

Also see
“Handle Incompatibilities with Automatic
Stubbing”.

Division by zero found in model To view the conditions that cause the
division by zero, create a harness model.
When you simulate the harness, the inputs
replicate the error. Click View test case in
the Model Advisor report.

See Also

“Design Error Detection”

Detect out of bound array access with Simulink Design Verifier

Detects operations that access outside the bounds of an array index

Description

This check detects instances of out of bound array access in Simulink Design Verifier.

Results and Recommended Actions

Result Recommended Action

Failed, model incompatible Resolve the model incompatibility. See

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

• “Support Limitations for Model Blocks”
• “Support Limitations for Simulink

Software Features”

3-7

3 Model Advisor Checks

Result Recommended Action

• “Support Limitations for Stateflow
Software Features”

• “Support Limitations for MATLAB for
Code Generation”

Also see
“Handle Incompatibilities with Automatic
Stubbing”.

Out of bound array access found in model To view the conditions that cause the out
of bound array access, create a harness
model. When you simulate the harness, the
inputs replicate the error. Click View test
case in the Model Advisor report.

See Also

“Design Error Detection”

Detect violation of minimum and maximum values with Simulink Design
Verifier

Detect signals which exceed specified minimum and maximum values

Description

This analysis checks the specified minimum and maximum values (the design ranges)
on intermediate signals throughout the model and on the output ports. If the analysis
detects that a signal exceeds the design range, the results identify where in the model
the errors occurred.

Results and Recommended Actions

Result Recommended Action

Failed, model incompatible Resolve the model incompatibility. See

• “Supported and Unsupported Simulink
Blocks in Simulink Design Verifier”

• “Support Limitations for Model Blocks”

3-8

 Simulink Design Verifier Checks

Result Recommended Action

• “Support Limitations for Simulink
Software Features”

• “Support Limitations for Stateflow
Software Features”

• “Support Limitations for MATLAB for
Code Generation”

Also see
“Handle Incompatibilities with Automatic
Stubbing”.

Violation of minimum and/or maximum
found in model

To view the conditions that cause the
violation, create a harness model. When
you simulate the harness, the inputs
replicate the error. Click View test case in
the Model Advisor report.

See Also

“Design Range Checks”

3-9

